Abstract-Parallel machines are becoming more complex with increasing core counts and more heterogeneous architectures. However, the commonly used parallel programming models, C/C++ with MPI and/or OpenMP, make it difficult to write source code that is easily tuned for many targets. Newer language approaches attempt to ease this burden by providing optimization features such as automatic load balancing, overlap of computation and communication, message-driven execution, and implicit data layout optimizations. In this paper, we compare several implementations of LULESH, a proxy application for shock hydrodynamics, to determine strengths and weaknesses of different programming models for parallel computation. We focus on four traditional (OpenMP, MPI, MPI+OpenMP, CUDA) and four emerging (Chapel, Charm++, Liszt, Loci) programming models. In evaluating these models, we focus on programmer productivity, performance and ease of applying optimizations.
Abstract-The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has been explored in the past, but those efforts have had only modest success in being adopted in HPC applications for various reasons. However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential for productivity and performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature on the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions are available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity without sacrificing performance. This paper examines these trends and identifies commonalities that can combine various locality concepts to develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance computing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.