The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.
The identification of tumor-suppressor genes in solid tumors by classical cancer genetics methods is difficult and slow. We combined nonsense-mediated RNA decay microarrays 1 and array-based comparative genomic hybridization 2,3 for the genome-wide identification of genes with biallelic inactivation involving nonsense mutations and loss of the wild-type allele. This approach enabled us to identify previously unknown mutations in the receptor tyrosine kinase gene EPHB2. The DU 145 prostate cancer cell line, originating from a brain metastasis, carries a truncating mutation of EPHB2 and a deletion of the remaining allele. Additional frameshift, splice site, missense and nonsense mutations are present in clinical prostate cancer samples. Transfection of DU 145 cells, which lack functional EphB2, with wild-type EPHB2 suppresses clonogenic growth. Taken together with studies indicating that EphB2 may have an essential role in cell migration and maintenance of normal tissue architecture, our findings suggest that mutational inactivation of EPHB2 may be important in the progression and metastasis of prostate cancer.Inactivation of tumor-suppressor genes (TSGs) in cancer is often a two-step process 4 involving mutation of the target gene and loss of the wild-type allele. Mapping of chromosomal deletions and losses of heterozygosity in cancer cells has been widely applied to guide the identification of TSGs. On its own, however, this approach is slow, labor-intensive and complicated by genomic instability, which often leads to numerous candidate regions for further study. In an alternative approach, the nonsense-mediated decay (NMD) mechanism, which normally targets transcripts with nonsense mutations for rapid degradation 5,6 , is blocked to cause the differential stabilization of genes that contain truncating mutations. This approach, coupled with microarrays to measure transcript levels after NMD inhibition, has been proposed for the genome-wide identification of mutated genes in cell lines 1 .Here we combined results from NMD microarray experiments highlighting putative nonsense mutations with high-resolution data on deleted genomic regions in cancer cell lines obtained with arraybased comparative genomic hybridization (CGH) 2,3 . We applied this integrated approach, which focuses on biallelic gene inactivation events, to the identification of candidate TSGs in prostate cancer.We pretreated the DU 145, PC-3 and LNCaP prostate cancer cell lines with emetine (which inhibits the NMD pathway) and then exposed them to actinomycin D to block new mRNA synthesis and to distinguish post-transcriptional shifts in mRNA stability, which indicate the presence of a nonsense mutation. We used cDNA microarrays to measure changes in transcript levels in cells treated with emetine versus untreated cells. We also carried out corresponding analyses with nonmalignant control cells to distinguish drug-induced gene expression changes from mutation-induced transcript stabilization events. We used known nonsense mutations, including the C39X...
Diabetic nephropathy is the most common cause of chronic kidney failure and end-stage renal disease in the Western World. One of the major characteristics of this disease is the excessive accumulation of extracellular matrix (ECM) in the kidney glomeruli. While both environmental and genetic determinants are recognized for their role in the development of diabetic nephropathy, epigenetic factors, such as DNA methylation, long non-coding RNAs, and microRNAs, have also recently been found to underlie some of the biological mechanisms, including ECM accumulation, leading to the disease. We previously found that a long non-coding RNA, the plasmacytoma variant translocation 1 (PVT1), increases plasminogen activator inhibitor 1 (PAI-1) and transforming growth factor beta 1 (TGF-β1) in mesangial cells, the two main contributors to ECM accumulation in the glomeruli under hyperglycemic conditions, as well as fibronectin 1 (FN1), a major ECM component. Here, we report that miR-1207-5p, a PVT1-derived microRNA, is abundantly expressed in kidney cells, and is upregulated by glucose and TGF-β1. We also found that like PVT1, miR-1207-5p increases expression of TGF-β1, PAI-1, and FN1 but in a manner that is independent of its host gene. In addition, regulation of miR-1207-5p expression by glucose and TGFβ1 is independent of PVT1. These results provide evidence supporting important roles for miR-1207-5p and its host gene in the complex pathogenesis of diabetic nephropathy.
Purpose: To comprehensively evaluate ephrin receptor B2 (EphB2) expression in normal and neoplastic tissues. EphB2 is a tyrosine kinase recently implicated in the deregulation of cell-to-cell communication in many tumors. Experimental Design: EphB2 protein expression was analyzed by immunohistochemistry on tissue microarrays that included 76 different normal tissues, >4,000 samples from 138 different cancer types, and 1,476 samples of colon cancer with clinical follow-up data. Results:We found most prominent EphB2 expression in the intestinal epithelium (colonic crypts) with cancer of the colorectum displaying the highest EphB2 positivity of all tumors. Positivity was found in 100% of 118 colon adenomas but in 33.3% of 45 colon carcinomas. EphB2 expression was also observed in 75 tumor categories, including serous carcinoma of the endometrium (34.8%), adenocarcinoma of the esophagus (33.3%), intestinal adenocarcinoma of the stomach (30.2%), and adenocarcinoma of the small intestine (70%). The occasional finding of strong EphB2 positivity in tumors without EphB2 positivity in the corresponding normal cells [adenocarcinoma of the lung (4%) and pancreas (2.2%)] suggests that deregulation of EphB2 signaling may involve up-regulation of the protein expression. In colon carcinoma, loss of EphB2 expression was associated with advanced stage (P < 0.0001) and was an indicator of poor overall survival (P = 0.0098). Conclusions: Our results provide an overview on the EphB2 protein expression in normal and neoplastic tissues. Deregulated EphB2 expression may play a role in several cancer types with loss of EphB2 expression serving as an indicator of the possible pathogenetic role of EphB2 signaling in the maintenance of tissue architecture of colon epithelium.
Arthrogryposis by definition has multiple congenital contractures. All types of arthrogryposis have decreased in utero fetal movement. Because so many things are involved in normal fetal movement, there are many causes and processes that can go awry. In this era of molecular genetics, we have tried to place the known mutated genes seen in genetic forms of arthrogryposis into biological processes or cellular functions as defined by gene ontology. We hope this leads to better identification of all interacting pathways and processes involved in the development of fetal movement in order to improve diagnosis of the genetic forms of arthrogryposis, to lead to the development of molecular therapies, and to help better define the natural history of various types of arthrogryposis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.