Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfvén eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n=4−9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfvén wave (KAW) that occurs on the high-field side at the Alfvén resonance location. High-frequency Alfvén eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam-driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.
Three-dimensional nonlinear simulations of Alfvén eigenmodes in the subcyclotron frequency range show a robust physical stabilizing mechanism via modest off-axis beam injection, in agreement with experimental observations from the National Spherical Torus Experiment (NSTX-U). Experimental results from NSTX-U have demonstrated that neutral beam injection from the new beam sources with large tangency radii deposits beam ions with large pitch, which can very effectively stabilize all unstable Global Alfvén Eigenmodes (GAEs). Beam-driven GAEs have been linked to enhanced electron transport in NSTX, and the ability to control these modes will have significant implications for NSTX-U, ITER, and other fusion devices where super-Alfvénic fast ions might be present. Nonlinear simulations using the HYM code have been performed to study the excitation and stabilization of GAEs in the NSTX-U right before and shortly after the additional off-axis beam injection. The simulations reproduce the experimental finding, namely, it is shown that off-axis neutral beam injection reliably and strongly suppresses all unstable GAEs. Before additional beam injection, the simulations show unstable counter-rotating GAEs with toroidal mode numbers and frequencies that match the experimentally observed modes. Additional off-axis beam injection has been modeled by adding beam ions with large pitch and varying density. The complete stabilization occurs at less than 7% of the total beam ion inventory. New analytical theory of GAE (de)stabilization has also been derived, suggesting a different interpretation for the GAE stabilization mechanism compared to previous publications.
Conditions for net fast ion drive are derived for beam-driven, sub-cyclotron compressional (CAE) and global (GAE) Alfvén eigenmodes, such as those routinely observed in spherical tokamaks such as NSTX(-U) and MAST. Both co-and counter-propagating CAEs and GAEs are investigated, driven by the ordinary and anomalous Doppler-shifted cyclotron resonance with fast ions. Whereas prior results were restricted to vanishingly narrow distributions in velocity space, broad parameter regimes are identified in this work which enable an analytic treatment for realistic fast ion distributions generated by neutral beam injection. The simple, approximate conditions derived in these regimes for beam distributions of realistic width compare well to the numerical evaluation of the full analytic expressions for fast ion drive. Moreover, previous results in the very narrow beam case are corrected and generalized to retain all terms in ω/ω ci and k /k ⊥ , which are often assumed to be small parameters but can significantly modify the conditions of drive and damping when they are non-negligible. Favorable agreement is demonstrated between the approximate stability criterion, simulation results, and a large database of NSTX observations of cntr-GAEs. arXiv:1909.05462v1 [physics.plasm-ph]
The mission of the spherical tokamak NSTX-U is to explore the physics that drives core and pedestal transport and stability at high- and low collisionality, as part of the development of the spherical tokamak (ST) concept towards a compact, low-cost ST-based pilot plant. NSTX-U will ultimately operate at up to 2 MA and 1 T with up to 12 MW of neutral beam injection power for 5 s. NSTX-U will operate in a regime where electromagnetic instabilities are expected to dominate transport, and beam-heated NSTX-U plasmas will explore a portion of energetic particle parameter space that is relevant for both -heated conventional and low aspect ratio burning plasmas. NSTX-U will also develop the physics understanding and control tools to ramp-up and sustain high performance plasmas in a fully-noninductive fashion. NSTX-U began research operations in 2016, but a failure of a divertor magnetic field coil after ten weeks of operation resulted in the suspension of operations and initiation of recovery activities. During this period, there has been considerable work in the area of analysis, theory and modeling of data from both NSTX and NSTX-U, with a goal of understanding the underlying physics to develop predictive models that can be used for high-confidence projections for both ST and higher aspect ratio regimes. These studies have addressed issues in thermal plasma transport, macrostability, energetic particlet-driven instabilities at ion-cyclotron frequencies and below, and edge and divertor physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.