The transcriptional inhibitor Snail is a critical regulator for epithelial-mesenchymal transition (EMT). Although low oxygen induces Snail transcription, thereby stimulating EMT, a direct role of hypoxia-inducible factor (HIF) in this process remains to be demonstrated. Here we show that hypoxia induces the expression of Snail via HIF. In silico analysis identified a potential hypoxia-response element (HRE) close to the minimal promoter of the human and mouse genome of the snail gene. Gel shift assays demonstrated that a specific hypoxiainducible complex is formed with the putative HRE and that the complex contains HIF proteins. ChIP assays confirmed the interaction of HIF proteins with the putative HRE in vivo. Reporter gene analyses showed that the putative HRE responds to hypoxia in its natural position as well as in front of a heterologous promoter and that the HRE is directly activated by HIF-1a or HIF-2a. HIF knockdown with siRNA at 2% oxygen and overexpression of an oxygen-insensitive HIF (HIF-DODD) mutant at 21% oxygen showed that HIF regulates Snail activation and subsequent cell migration. Our findings identify snail as a HIF target gene and provide novel insights into the regulation of snail and hypoxia-induced EMT. Mol Cancer Res; 9(2); 234-45. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.