Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottomup self-assembly of cylindrical, atomically precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical "forests" of these arrays on a highly ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.
The unique optoelectronic properties and smooth, rigid pores of macrocycles with radially oriented p systems render them fascinating candidates for the design of novel mechanically interlocked molecules with new properties.T wo high-yielding strategies are used to prepare nanohoop [2]rotaxanes,which owing to the p-rich macrocycle are highly emissive. Then, metal coordination, an intrinsic property afforded by the resulting mechanical bond, can lead to molecular shuttling as well as modulate the observed fluorescence in both organic and aqueous conditions.Inspired by these findings,aself-immolative [2]rotaxane was then designed that self-destructs in the presence of an analyte,e liciting as trong fluorescent turn-on response,s erving as proof-of-concept for an ew type of molecular sensing material. More broadly,this work highlights the conceptual advantages of combining compact p-rich macrocyclic frameworks with mechanical bonds formed via active-template syntheses.
Because of their unique cyclic architectures, tunable electronic properties, and supramolecular chemistries, cycloparaphenylenes (CPPs) have the potential to act as a new class of ligands for coordination cages, metal-organic frameworks, and small-molecule transition-metal complexes. However, currently there is no general strategy to coordinate the cyclic framework to a variety of metal centers. We report here a general and scalable synthetic strategy to embed 2,2'-bipyridine units into the backbone of CPPs. We use this approach to synthesize a 2,2'-bipyridine-embedded [8]CPP, which we show can successfully coordinate to both Pd(II) and Ru(II) metal centers. The resulting coordination complexes, a Pd(II)-nanohoop dimer and a bis(bipyridyl)ruthenium(II)-functionalized nanohoop, show unique solid-state and photophysical properties. This work provides a proof of concept for a general strategy to use nanohoops and their derivatives as a new class of ligands.
A highly-strained, nitrogen-doped cycloparaphenylene (CPP), aza[6]CPP, was synthesized and then converted to a donor-acceptor nanohoop, N-methylaza[6]CPP, via alkylation of the nitrogen center. The energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) for both molecules were then probed by cyclic voltammetry (CV), which revealed that the donor-acceptor nanohoop had a significantly lower LUMO energy relative to [6]CPP and aza[6]CPP. Density functional theory (DFT) revealed that the donor-acceptor nanohoop underwent a redistribution of the frontier molecular orbital (FMO) density such that a significant portion of the LUMO density resided upon the electron-deficient nitrogen-containing ring. This localization of LUMO density caused a large lowering in the LUMO energy of nearly a full electron volt, while the HOMO energy was less affected due to a large centralization of the FMO on the electron-rich phenylene backbone. This ultimately resulted in a net lowering of the HOMO-LUMO energy gap which was observed both experimentally and computationally. In addition, N-methylaza[6]CPP has a significantly lower energy LUMO than N-methylaza[8]CPP, illustrating that the FMO levels of donor-acceptor nanohoops can be tuned by adjusting the hoop size.
The scalable production of homogeneous, uniform carbon nanomaterials represents a key synthetic challenge for contemporary organic synthesis as nearly all current fabrication methods provide heterogeneous mixtures of various carbonized products. For carbon nanotubes (CNTs) in particular, the inability to access structures with specific diameters or chiralities severely limits their potential applications. Here, we present a general approach to access solid-state CNT mimic structures via the self-assembly of fluorinated nanohoops, which can be synthesized in a scalable, size-selective fashion. X-ray crystallography reveals that these CNT mimics exhibit uniform channel diameters that are precisely defined by the diameter of their nanohoop constituents, which self-assemble in a tubular fashion via a combination of arene-pefluoroarene and C-H---F interactions. The nanotube-like assembly of these systems results in capabilities such as linear guest alignment and accessible channels, both of which are observed in CNTs but not in the analogous all-hydrocarbon nanohoop systems. Calculations suggest that the organofluorine interactions observed in the crystal structure are indeed critical in the selfassembly and robustness of the CNT mimic systems. This work establishes the self-assembly of carbon nanohoops via weak interactions as an attractive means to generate solid-state materials that mimic carbon nanotubes, importantly with the unparalleled tunability enabled by organic synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.