A novel octadentate 3-hydroxypyridin-2-one (2,3-HOPO) based di-macrocyclic ligand was evaluated for chelation of 89Zr; subsequently, it was used as a bi-functional chelator for preparation of 89Zr-labeled antibodies. Quantitative chelation of 89Zr4+ with the octadentate ligand forming 89ZrL complex was achieved under mild conditions within 15 minutes. The 89Zr-complex was stable in vitro in presence of DTPA, but a slow degradation was observed in serum. In vivo, the hydrophilic 89Zr-complex showed prevalently renal excretion; and an elevated bone uptake of radioactivity suggested a partial release of 89Zr4+ from the complex.The 2,3-HOPO based ligand was conjugated to the monoclonal antibodies, HER2-specific trastuzumab and an isotypic anti-gD antibody, using a p-phenylene bis-isothiocyanate linker to yield products with an average loading of less than 2 chelates per antibody. Conjugated antibodies were labeled with 89Zr under mild conditions providing the PET tracers in 60-69% yield. Despite the limited stability in mouse serum; the PET tracers performed very well in vivo. The PET imaging in mouse model of HER2 positive ovarian carcinoma showed tumor uptake of 89Zr-trastuzumab (29.2 ± 12.9 %ID/g) indistinguishable (p = 0.488) from the uptake of positive control 89Zr-DFO-trastuzumab (26.1 ± 3.3 %ID/g).In conclusion, the newly developed 3-hydroxypyridin-2-one based di-macrocyclic chelator provides a viable alternative to DFO-based heterobifunctional ligands for preparation of 89Zr-labeled monoclonal antibodies for immunoPET studies.
Limitations to the application of molecularly targeted cancer therapies are the inability to accurately match patient with effective treatment and the absence of a prompt readout of posttreatment response. Noninvasive agents that rapidly report vascular endothelial growth factor (VEGF) levels using positron emission tomography (PET) have the potential to enhance anti-angiogenesis therapies. Using phage display, two distinct classes of peptides were identified that bind to VEGF with nanomolar affinity and high selectivity. Co-crystal structures of these different peptide classes demonstrate that both bind to the receptor-binding region of VEGF. (18)F-radiolabelling of these peptides facilitated the acquisition of PET images of tumor VEGF levels in a HM7 xenograph model. The images obtained from one 59-residue probe, (18)F-Z-3B, 2 hr postinjection are comparable to those obtained with anti-VEGF antibody B20 72 hr postinjection. Furthermore, VEGF levels in growing SKOV3 tumors were followed using (18)F-Z-3B as a PET probe with VEGF levels increasing with tumor size.
Imaging of the glial activation that occurs in response to central nervous system trauma and inflammation could become a powerful technique for the assessment of several neuropathologies. The selective uptake and metabolism of 2-18 F-fluoroacetate ( 18 F-FAC) in glia may represent an attractive strategy for imaging glial metabolism. Methods: We have evaluated the use of 18 F-FAC as a specific PET tracer of glial cell metabolism in rodent models of glioblastoma, stroke, and ischemia-hypoxia. Results: Enhanced uptake of 18 F-FAC was observed (6.98 6 0.43 percentage injected dose per gram [%ID/g]; tumor-to-normal ratio, 1.40) in orthotopic U87 xenografts, compared with healthy brain tissue. The lesion extent determined by 18 F-FAC PET correlated with that determined by MRI (R 2 5 0.934, P 5 0.007). After transient middle cerebral artery occlusion in the rat brain, elevated uptake of 18 F-FAC (1.00 6 0.03 %ID/g; lesion-to-normal ratio, 1.90) depicted the ischemic territory and correlated with infarct volumes as determined by 2,3,5-triphenyltetrazolium chloride staining (R 2 5 0.692, P 5 0.010) and with the presence of activated astrocytes detected by anti-glial fibrillary acidic protein.Ischemia-hypoxia, induced by permanent ligation of the common carotid artery with transient hypoxia, resulted in persistent elevation of 18 F-FAC uptake within 30 min of the induction of hypoxia. Conclusion: Our data support the further evaluation of 18 F-FAC PET for the assessment of glial cell metabolism associated with neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.