The glucocorticoid receptor protein, in association with cognate hormonal ligands, binds with high affinity to specific DNA sequences termed glucocorticoid response elements (GREs) which can function as hormone-dependent transcriptional enhancers; thus, the receptor is a regulable enhancer-activating protein. We have constructed cell lines expressing different levels of glucocorticoid receptor, and demonstrate that the extent of a structural alteration in the chromatin at a characterized GRE, as well as the magnitude of several transcriptional responses elicited by the receptor, are roughly proportional to the number of receptor molecules per cell. Thus, for three independent glucocorticoid-responsive transcription units examined in our HTC-derived cell lines, the receptor appears to be a primary regulatory factor. Moreover, the results suggest that other cellular factors required for the assembly and function of GREs and transcription initiation complexes must be produced in excess relative to their levels of utilization at normal receptor concentrations.
Pulmonary alveolar type I cells (TI cell) are very large (ñ5400 µm2 in surface area) squamous cells that cover more than 98% of the internal surface area of rodent lungs. In the past, TI cells were believed to serve only passive barrier functions, with no active functional properties in the lung. The fairly recent development of methods to isolate TI cells has permitted investigation of functions of this cell type for the first time. Resolvable by electron microscopy, TI cells contain microvilli and organelles typically associated with metabolic functions, such as mitochondria, abundant smooth and rough endoplasmic reticulum and Golgi apparatus. TI cells contain the molecular machinery necessary for ion transport and take up Na+, K+, and Cl-, from which one can infer that it is likely that they play a role in ion and fluid transport in vivo. Because the abundance/µm2 of highly selective Na+ channels (HSC channels, consisting of all three ENaC subunits) is the same in TI and TII cells and because TI cells cover the majority of the lung internal surface, TI cells may play the major role in bulk transport of Na+. In vitro, TI cells can proliferate and exhibit phenotypic plasticity, raising the question of whether this cell type may play a role in development and lung repair after injury. From gene expression analysis of TI cells, one can infer a variety of other possible functions for TI cells. The development of techniques to administer transgenes specifically to TI cells will permit direct study of this cell type in vivo.
The proinflammatory CXC chemokines GRO, CINC-2alpha, and macrophage inflammatory protein (MIP)-2 are a closely related family of neutrophil chemoattractants. Here, we report that freshly isolated alveolar Type II (TII) cells express these chemokine mRNAs at much higher levels than do freshly isolated Type I cells or alveolar macrophages (AM). TII cells also express CXCR2, the receptor for these chemokines. Lung injury caused by acid or Pseudomonas aeruginosa (Pa) caused an increase in TII cell expression of chemokine mRNAs and GRO protein. We compared the time courses of chemokine mRNA expression in cultured TII cells and AM. In TII cells, GRO mRNA levels were stable over 4 h, but decreased to undetectable levels by 24 h. CINC-2alpha and MIP-2 mRNA levels were low in freshly isolated cells, increased over 2-4 h in culture, and by 24 h dropped to undetectable levels. In contrast, none of these chemokine mRNAs were detected in freshly isolated AM, but expression was induced by tissue culture. In summary, we have shown that TII alveolar epithelial cells produce three of the major proinflammatory CXC chemokines (GRO, CINC-2alpha, and MIP-2) and their cognate receptor CXCR2. Chemokine expression is upregulated in response to lung injury. These observations support a central role for the TII cell as an immunologic effector cell in the alveolus and raise intriguing questions about how CXC chemokines and receptors modulate diverse normal and pathologic cellular responses in the alveoli.
Oligohydramnios (OH) retards fetal lung growth by producing less lung distension than normal. To examine effects of decreased distension on fetal lung development, we produced OH in rats by puncture of uterus and fetal membranes at 16 days of gestation; fetuses were delivered at 21 or 22 days of gestation. Controls were position-matched littermates in the opposite uterine horn. OH lungs had lower weights and less DNA, protein, and water, but no differences in saturated phosphatidylcholine, surfactant proteins (SP)-A and -B, and mRNA for SP-A, -B, -C, and -D. To evaluate effects on epithelial differentiation, we used RTI 40 and RTII70, proteins specific in lung to luminal surfaces of alveolar type I and II cells, respectively. At 22 days of gestation, OH lungs had less RTI40 mRNA (P Ͻ 0.05) and protein (P Ͻ 0.001), but RTII70 did not differ from controls. With OH, type I cells (in proportion to type II cells) covered less distal air space perimeter (P Ͻ 0.01). We conclude that OH, which retards lung growth, has little effect on surfactant and impedes formation of type I cells relative to type II cells. fetal lung development; lung distension; pulmonary epithelial differentiation; pulmonary hypoplasia; pulmonary surfactant IN LATE GESTATION, the fetal lung undergoes marked changes in preparation for the transition to extrauterine life. These changes include growth, enlargement of distal potential air spaces, thinning of the septa, maturation of the surfactant system, and differentiation of distal pulmonary epithelium into mature alveolar type I and type II cells. Several studies have shown that fetal lung growth is controlled primarily by mechanical factors, especially distension of the lung (for reviews, see Refs. 26 and 29) and that maturation of the surfactant system is controlled primarily by endocrine factors (for reviews, see Refs. 3 and 48). In contrast, relatively little is known about factors that regulate differentiation of the alveolar epithelium.In 1977, Alcorn and associates (2) reported that tracheal ligation in fetal sheep, which increased lung distension, caused accelerated lung growth and a qualitative reduction in the number of alveolar type II cells; conversely, chronic drainage of tracheal fluid, which inhibited lung distension, retarded lung growth and increased the number of type II cells. However, they reported neither quantitative data for cell counts nor measurements of indicators of surfactant, which is produced by type II cells. Subsequently, other investigators have studied tracheal ligation in fetal sheep and have confirmed that an increase in lung distension results in a lower number of type II cells (6,11,37) and a higher percentage of type I cells (18). Tracheal ligation also results in lower concentrations in the lung of surfactant protein (SP)-A and saturated phosphatidylcholine (SatPC), the major surface-active lipid in pulmonary surfactant (28), as well as mRNA for SP-A, -B, and -C (32). Conversely, transection of the cervical spinal cord (which abolishes fetal breathing movemen...
Mammalian glucocorticoid receptors enhance transcription from linked promoters by binding to glucocorticoid response element (GRE) DNA sequences. Understanding the mechanism of receptor action will require biochemical studies with purified components. Enhancement was observed in vitro with derivatives of the receptor that were expressed in Escherichia coli, purified, and added to a cell-free extract from Drosophila embryo nuclei. Transcription from promoters linked to one or multiple GREs was selectively enhanced by as much as six times. The effect was weaker with only one GRE, and enhancement was abolished by a point mutation that inactivates the GRE in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.