Objective To update evidence‐based recommendations for the treatment of patients with ankylosing spondylitis (AS) and nonradiographic axial spondyloarthritis (SpA). Methods We conducted updated systematic literature reviews for 20 clinical questions on pharmacologic treatment addressed in the 2015 guidelines, and for 26 new questions on pharmacologic treatment, treat‐to‐target strategy, and use of imaging. New questions addressed the use of secukinumab, ixekizumab, tofacitinib, tumor necrosis factor inhibitor (TNFi) biosimilars, and biologic tapering/discontinuation, among others. We used the Grading of Recommendations, Assessment, Development and Evaluation methodology to assess the quality of evidence and formulate recommendations and required at least 70% agreement among the voting panel. Results Recommendations for AS and nonradiographic axial SpA are similar. TNFi are recommended over secukinumab or ixekizumab as the first biologic to be used. Secukinumab or ixekizumab is recommended over the use of a second TNFi in patients with primary nonresponse to the first TNFi. TNFi, secukinumab, and ixekizumab are favored over tofacitinib. Co‐administration of low‐dose methotrexate with TNFi is not recommended, nor is a strict treat‐to‐target strategy or discontinuation or tapering of biologics in patients with stable disease. Sulfasalazine is recommended only for persistent peripheral arthritis when TNFi are contraindicated. For patients with unclear disease activity, spine or pelvis magnetic resonance imaging could aid assessment. Routine monitoring of radiographic changes with serial spine radiographs is not recommended. Conclusion These recommendations provide updated guidance regarding use of new medications and imaging of the axial skeleton in the management of AS and nonradiographic axial SpA.
Objective To update evidence‐based recommendations for the treatment of patients with ankylosing spondylitis (AS) and nonradiographic axial spondyloarthritis (SpA). Methods We conducted updated systematic literature reviews for 20 clinical questions on pharmacologic treatment addressed in the 2015 guidelines, and for 26 new questions on pharmacologic treatment, treat‐to‐target strategy, and use of imaging. New questions addressed the use of secukinumab, ixekizumab, tofacitinib, tumor necrosis factor inhibitor (TNFi) biosimilars, and biologic tapering/discontinuation, among others. We used the Grading of Recommendations, Assessment, Development and Evaluation methodology to assess the quality of evidence and formulate recommendations and required at least 70% agreement among the voting panel. Results Recommendations for AS and nonradiographic axial SpA are similar. TNFi are recommended over secukinumab or ixekizumab as the first biologic to be used. Secukinumab or ixekizumab is recommended over the use of a second TNFi in patients with primary nonresponse to the first TNFi. TNFi, secukinumab, and ixekizumab are favored over tofacitinib. Co‐administration of low‐dose methotrexate with TNFi is not recommended, nor is a strict treat‐to‐target strategy or discontinuation or tapering of biologics in patients with stable disease. Sulfasalazine is recommended only for persistent peripheral arthritis when TNFi are contraindicated. For patients with unclear disease activity, spine or pelvis magnetic resonance imaging could aid assessment. Routine monitoring of radiographic changes with serial spine radiographs is not recommended. Conclusion These recommendations provide updated guidance regarding use of new medications and imaging of the axial skeleton in the management of AS and nonradiographic axial SpA.
Natural behavior requires close but flexible coordination between attention, defined as selection for perception, and action. In recent years a distributed network including the lateral intraparietal area (LIP) has been implicated in visuospatial selection for attention and rapid eye movements (saccades), but the relation between the attentional and motor functions of this area remains unclear. Here we tested LIP neurons in a task that involved not an ocular but a manual operant response. Monkeys viewed a display containing one cue and several distractors and reported the orientation of the cue (right-or left-facing) by releasing one of two bars grasped, respectively, with the right or left hand. The movement in this task thus was associated with (cued by), but not directed toward, the visual stimulus. A large majority of neurons responded more when the cue rather than when a distractor was in their receptive field, suggesting that they contribute to the attentional selection of the cue. A fraction of these neurons also was modulated by limb release, thus simultaneously encoding cue location and the active limb. The results suggest that the LIP links behaviorally relevant visual information with motor variables relevant for solving a task in a wide range of circumstances involving goal-directed or symbolically cued movements and eye as well as limb movements. A central function of the LIP may be to coordinate visual and motor selection during a wide variety of behaviors.
It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with each other, but the loci and mechanisms of this interference are unknown. Here we show that the set-size effect has a neural correlate in competitive visuo-visual interactions in the lateral intraparietal area, an area related to spatial attention and eye movements. Monkeys performed a covert visual search task in which they discriminated the orientation of a visual target surrounded by distractors. Neurons encoded target location, but responses associated with both target and distractors declined as a function of distractor number (set size). Firing rates associated with the target in the receptive field correlated with reaction time both within and across set sizes. The findings suggest that competitive visuo-visual interactions in areas related to spatial attention contribute to capacity limitations in visual searches.
Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ASD children performed normally during trace EBC, exhibiting no differences from typically-developing (TD) subjects with regard to learning rate or the timing of the CR. However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.