The thermochemistry of the conversion of glucose to levulinic acid through fructofuranosyl intermediates is investigated using the high-level ab initio methods G4 and G4MP2. The calculated gas phase reaction enthalpies indicate that the first two steps involving water molecule elimination are highly endothermic, while the other steps, including additional water elimination and rehydration to form levulinic acid, are exothermic. The calculated gas phase free energies indicate that inclusion of entropic effects makes the dehydration steps more favorable, although the elimination of the first water is still endothermic. Elevated temperatures and aqueous reaction environments are also predicted to make the dehydration reaction steps thermodynamically more favorable. On the basis of these enthalpy and free energy calculations, the first dehydration step in conversion of glucose to levulinic acid is likely a key step in controlling the overall progress of the reaction. An assessment of density functional theories and other theoretical methods for the calculation of the dehydration and hydration reactions in the decomposition of glucose is also presented.
The coupled cluster (CC) ansatz is generally recognized as providing one of the best wave function-based descriptions of electronic correlation in small- and medium-sized molecules. The fact that the CC equations with double excitations (CCD) may be expressed as a handful of dense matrix-matrix multiplications makes it an ideal method to be ported to graphics processing units (GPUs). We present our implementation of the spin-free CCD equations in which the entire iterative procedure is evaluated on the GPU. The GPU-accelerated algorithm readily achieves a factor of 4-5 speedup relative to the multithreaded CPU algorithm on same-generation hardware. The GPU-accelerated algorithm is approximately 8-12 times faster than Molpro, 17-22 times faster than NWChem, and 21-29 times faster than GAMESS for each CC iteration. Single-precision GPU-accelerated computations are also performed, leading to an additional doubling of performance. Single-precision errors in the energy are typically on the order of 10(-6) hartrees and can be improved by about an order of magnitude by performing one additional iteration in double precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.