Purpose The measurement of velocities based on PC-MRI can be subject to different phase offset errors which can affect the accuracy of velocity data. The purpose of this study was to determine the impact of these inaccuracies and to evaluate different correction strategies on 3D visualization. Methods PC-MRI was performed on a 3 T system (Siemens Trio) for in vitro (curved/straight tube models; venc: 0.3 m/s) and in vivo (aorta/intracranial vasculature; venc: 1.5/0.4 m/s) data. For comparison of the impact of different magnetic field gradient designs, in vitro data was additionally acquired on a wide bore 1.5 T system (Siemens Espree). Different correction methods were applied to correct for eddy currents, Maxwell terms and gradient field inhomogeneities. Results The application of phase offset correction methods lead to an improvement of 3D particle trace visualization and count. The most pronounced differences were found for in vivo/in vitro data (68%/82% more particle traces) acquired with a low venc (0.3 m/s/0.4 m/s, respectively). In vivo data acquired with high venc (1.5 m/s) showed noticeable but only minor improvement. Conclusion This study suggests that the correction of phase offset errors can be important for a more reliable visualization of particle traces but is strongly dependent on the velocity sensitivity, object geometry, and gradient coil design.
A simple, clinically viable technique utilizing PRESS and strong coupling properties is presented for discrimination of coupled brain metabolites. The method relies on signal variation due to alteration of inter-echo timings (PRESS asymmetry) while maintaining a constant total echo time. Spin response of singlets and weakly coupled spins is unchanged due to PRESS asymmetry, allowing difference spectroscopy to detect unobstructed strongly coupled resonances. No changes to the standard PRESS sequence are required except variation of inter-echo timings. The procedure is illustrated for the separate detection of glutamate from glutamine and the detection of myo-inositol in simulation, phantom, and in vivo experiments at 4.7 T. The subtraction yields calculated from the simulation were 53% for glutamate and 75% for myo-inositol, and a resultant contribution of 96% glutamate to the total glutamate/glutamine multiplet in the 2.04-2.14 ppm range. To extend the treatment to other field strengths and metabolites, an analytical approximation based on a strongly coupled AB system was used to model individual spin groups. Subtraction spectroscopy yields for different combinations of coupling parameters were calculated for the detection of various strongly coupled metabolites at common clinical field strengths. The approximation also predicts adequate glutamate/glutamine discrimination at 3.0 T using the difference spectroscopy method.
Parallel excitation is being studied intensively for applications in MR imaging and in particular for selecting arbitrary shapes as regions of interest. In this work, parallel excitation was applied to arbitrarily shaped voxel selection in spectroscopy and investigated for different excitation k-space trajectories (radial, rectilinear, and spiral) and acceleration factors. Each trajectory was segmented into multiple excitations to increase the overall bandwidth during target selection. Acceleration by parallel excitation was used to decrease the number of segments. Evaluation of spatial and spectral localization of the target of interest was performed in simulation and phantom experiments, and was compared with the point resolved spectroscopy (PRESS) experiment with standard voxels. The selective excitation experiments demonstrated excellent spatial localization and a broad frequency response, although PRESS was superior in direct comparisons with respect to signal-to-noise ratio (SNR) and outer volume suppression. Extensive SNR variation was observed dependent on trajectory (8%-90%), with the preferred radial case producing approximately 40%-60% SNR of the PRESS case. Accelerated trajectories at R 5 4 provided comparable artifact signal and target excitation accuracy compared with their nonaccelerated counterparts; however, further acceleration (R 5 8) resulted in increased artifact (33% increase at R 5 8). Magn Reson Med 67:300-309,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.