Monitoring biological nutrient removal (BNR) processes at water resource recovery facilities (WRRFs) with data-driven models is currently limited by the data limitations associated with the variability of bioavailable carbon (C) in wastewater. This study focuses on leveraging the amperometric response of a bio-electrochemical sensor (BES) to wastewater C variability, to predict influent shock loading events and NO 3 − removal in the first-stage anoxic zone (ANX1) of a five-stage Bardenpho BNR process using machine learning (ML) methods. Shock loading prediction with BES signal processing successfully detected 86.9% of the influent industrial slug and rain events of the plant during the study period. Extreme gradient boosting (XGBoost) and artificial neural network (ANN) models developed using the BES signal and other recorded variables provided a good prediction performance for NO 3 − removal in the ANX1, particularly within the normal operating range of WRRFs. A sensitivity analysis of the XGBoost model using SHapley Additive exPlanations indicated that the BES signal had the strongest impact on the model output and current approaches to methanol dosing that neglect C availability can negatively impact nitrogen (N) removal due to cascading impacts of overdosing on nitrification efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.