Burgeoning interest in early childhood irritability has recently turned toward neuroimaging techniques to better understand normal versus abnormal irritability using dimensional methods. Current accounts largely assume a linear relationship between poor frustration management, an expression of irritability, and its underlying neural circuitry. However, the relationship between these constructs may not be linear (i.e., operate differently at varying points across the irritability spectrum), with implications for how early atypical irritability is identified and treated. Our goal was to examine how the association between frustration-related lateral prefrontal cortex (LPFC) activation and irritability differs across the dimensional spectrum of irritability by testing for non-linear associations. Children (N = 92; ages 3-7) ranging from virtually no irritability to the upper end of the clinical range completed a frustration induction task while we recorded LPFC hemoglobin levels using fNIRS. Children self-rated their emotions during the task and parents rated their child's level of irritability. Whereas a linear model showed no relationship between frustration-related LPFC activation and irritability, a quadratic model revealed frustration-related LPFC activation increased as parent-reported irritability scores increased within the normative range of irritability but decreased with increasing irritability in the severe range, with an apex at the 91st percentile. Complementarily, we found children's self-ratings of emotion during frustration related to concurrent LPFC activation as an inverted U function, such that children who reported mild distress had greater activation than peers reporting no or high distress. Results suggest children with relatively higher irritability who are unimpaired may possess well-developed LPFC support, a mechanism that drops out in the severe end of the irritability dimension. Findings suggest novel avenues for understanding the heterogeneity of early irritability and its clinical sequelae.
Abstract. Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique, which uses light to measure changes in cerebral blood oxygenation through sensors placed on the surface of the scalp. We recorded concurrent fNIRS with magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) in order to investigate the group-level correspondence of these measures with source-localized fNIRS estimates. Healthy participants took part in both a concurrent fNIRS-MEG and fNIRS-fMRI neuroimaging session during two somatosensory stimulation tasks, a blocked design median nerve localizer and parametric pulsed-pair median nerve stimulation using interpulse intervals from 100 to 500 ms. We found the spatial correlation for estimated activation patterns from the somatosensory task was R ¼ 0.54, 0.57, and −0.48 and the amplitude correlation was R ¼ 0.80, 0.52, and −0.70 for fMRI-MEG, fMRI-fNIRS oxy-hemoglobin, and fMRI-fNIRS deoxy-hemoglobin signals, respectively. Taken together, these results show good correspondence among the fMRI, fNIRS, and MEG with the great majority of the difference across modalities being driven by lower sensitivity for deeper brain sources in MEG and fNIRS. These results provide an important validation of source-localized fNIRS in the context of concurrent multimodal imaging for future studies of the relationship between physiological effects in the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.