Quantum memories capable of storing and retrieving coherent information for extended times at room temperature would enable a host of new technologies. Electron and nuclear spin qubits using shallow neutral donors in semiconductors have been studied extensively but are limited to low temperatures (≲10 kelvin); however, the nuclear spins of ionized donors have the potential for high-temperature operation. We used optical methods and dynamical decoupling to realize this potential for an ensemble of phosphorous-31 donors in isotopically purified silicon-28 and observed a room-temperature coherence time of over 39 minutes. We further showed that a coherent spin superposition can be cycled from 4.2 kelvin to room temperature and back, and we report a cryogenic coherence time of 3 hours in the same system.
Ascertaining the physical state of a system is vital in order to understand and predict its behaviour. However, due to their fragile nature, the direct observation of quantum states has been elusive until recently. Historically, determination of the quantum state has been performed indirectly, through use of tomography. We report on two experiments showing that an alternative approach can be used to determine the polarisation quantum state in a simple, fast, and general manner. The first experiment entails the direct measurement of the probability amplitudes describing pure polarisation states of light, the first such measurement on a two-level system. The second experiment entails the direct measurement of the Dirac distribution (a phase-space quasi-probability distribution informationally equivalent to the density matrix), demonstrating that the direct measurement procedure is applicable to general (i.e., potentially mixed) quantum states. Our work has applications to measurements in foundational quantum mechanics, quantum information, and quantum metrology.Measurement plays a vital role in the practice of science. This is especially so in the case of quantum mechanics, where the measurement process is fundamental to the formulation of the theory. A crucial feature of quantum mechanics is that a measurement of one variable of a system erases information about the corresponding conjugate variable. The classic example is that determining the position of a particle disturbs its momentum, and vice versa. These measurements, known as strong measurements, collapse the wavefunction such that no additional information can be obtained.In order to completely determine a quantum state, which is described in general by complex numbers, one must perform multiple measurements on many identical copies of the system. Quantum tomography 1 is one method of quantum state determination that uses strong measurements 2-6 . Tomographic reconstruction entails estimating the complex numbers that describe the state
Multiparticle quantum interference is critical for our understanding and exploitation of quantum information, and for fundamental tests of quantum mechanics. A remarkable example of multipartite correlations is exhibited by the Greenberger-Horne-Zeilinger (GHZ) state. In a GHZ state, three particles are correlated while no pairwise correlation is found. The manifestation of these strong correlations in an interferometric setting has been studied theoretically since 1990 but no three-photon GHZ interferometer has been realized experimentally. Here we demonstrate threephoton interference that does not originate from two-photon or single photon interference. We observe phase-dependent variation of three-photon coincidences with (92.7±4.6) % visibility in a generalized Franson interferometer using energy-time entangled photon triplets. The demonstration of these strong correlations in an interferometric setting provides new avenues for multiphoton interferometry, fundamental tests of quantum mechanics and quantum information applications in higher dimensions.
Precise in-situ measurement of laser pulse intensity using strong field ionization Smeenk, C.; Salvail, J. Z.; Arissian, L.; Corkum, P. B.; Hebeisen, C. T.; Staudte, A.Precise in-situ measurement of laser pulse intensity using strong field ionization (2004)], we devise an improved method for an in-situ measurement of the peak intensity in a focused, femtosecond infrared laser pulse. The method is shown to be effective with both photoion and photoelectron imaging devices. The model used to fit the experimental data has no unphysical free parameters used in fitting. The accuracy of the fit is 4% and the overall accuracy of the measurement is 8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.