ABSTRACT.A fuzzy identification of the system's dynamic is developed with a data generated by a hydrogen fuel cell simulator. The data obtained is single input/single output, without having previous knowledge of the system model, and showing nonlinear behavior. The choice of the fuzzy method for identification is based on those particular data features, and the malleability of the mathematical fuzzy technique. The objective of the fuzzy identification is to reach an analytic formula for a better understanding of the causeeffect relationships of the data, followed by its validation. The dynamic system identification process is performed using fuzzy clustering through the Gustafson and Kessel algorithm, followed by a Takagi and Sugeno fuzzy inference method. The k-fold technique, is the cross validation tool, used to confirm the lack of data over-training. The novelty of this approach covers mathematical and engineering features that makes this study interdisciplinary. For the mathematical contribution, there is a three-dimensional graphic interpretation of the data clustering geometry, obtained through own code computer simulations. Concerning to the engineering context, the novelty is based on the use of the fuzzy approach to the hydrogen fuel cell. Both contributions have no precedent in the literature. The results of the fuzzy identification show high reliability in terms of cross validation, making the fuzzy approach a promising tool for black-box identification. Combining this technique with others will provide powerful instrument for industrial problems.
Resumo. Uma dinâmica do tipo presa-predador utilizando um autômato celular tridimensional em combinação com um sistema baseado em regras fuzzy é proposta com o objetivo de estender resultados obtidos para o bidimensional. Este sistema interage com as regras do autômato para determinar a taxa de predação dos tubarões que, junto aos peixes, compõem o planeta Wa-Tor.Palavras-chave. Modelo Presa-Predador, Autômato Celular 3D, Conjuntos Fuzzy.O planeta Wa-Tor ... tem a forma de um toro, ou donut, e é totalmente coberto por água. Os dois habitantes dominantes de Wa-Tor são tubarões e peixes.
Agradeço primeiramente a Deus pelo dom da vida. Agradeço ao meu orientador, Keiji Yamanaka, e coorientadora, Ana Maria Amarillo Bertone, pelas grandes instruções ministradas. Eles me ensinaram o que é pesquisar, o que é ciência e como a vida humana pode ser transformada através das contribuições da academia. Agradeço a minha amada esposa Mara Dalila e minha pequena filha Helena pela compreensão e apoio incondicionais. Agradeço aos meus pais e irmãs pelo amparo em todos os momentos. Resumo Técnicas de identificação de sistemas são essenciais para o conhecimento de fenômenos naturais e processos de diferentes origens. O principal intuito da presente pesquisa tem sido construir, teoricamente e computacionalmente, uma abordagem para lidar com sistemas de dados com várias entradas e uma saída. Duas etapas fuzzy distintas e bem definidas estão presentes no processo de identificação utilizado neste estudo: clusterização dos dados e uma inferência do tipo Takagi-Sugeno-Kang. A principal contribuição desta pesquisa é a construção dos antecedentes e dos consequentes do sistema de inferência nos quais são utilizados métodos inéditos. Uma forma de validar esta nova metodologia tem sido através de simulações com diferentes bases de dados. Os experimentos envolveram comparações com outras técnicas consolidadas como: Nonlinear Auto-Regressive with eXogenous inputs, Hammerstein-Wiener e Multilayer-Perceptron (redes neurais artificiais). A codificação tem sido feita sem a utilização de toolboxes, exceto para os testes que têm sido feitos com a rotina Compare do software Matlab, a qual utiliza medida de acurácia denominada raiz média quadrática do erro normalizada (Normalized Root Mean Square em inglês). Ao final, e como resultado das comparações, tem havido ganho de precisão na resposta e queda no esforço computacional. Como aplicação da nova técnica, têm sido realizados testes de predição de dados, com resultados promissores, além de estruturar uma nova metodologia para a interpretação de sinais provenientes de exames médicos como, por exemplo, eletroencefalogramas. Futuros trabalhos incluem a introdução da teoria dos conjuntos fuzzy do tipo 2, extensão da teoria dos conjuntos fuzzy, na dinâmica da inferência, com o objetivo de tornar ainda melhor, o desempenho da metodologia proposta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.