This work presents a failure diagnosis tool for a water pump using a low-cost MEMS accelerometer. It was inserted three types of failures: rotor blade (new and damaged), pump soleplate tightness (stiff or loose), and cavitation, in this case on three conditions: none, incipient and severe, totaling twelve fault combinations. These conditions were tested under two different speeds to perform the diagnosis, totaling twenty-four tests. In all cases, the vibration signals from axes X, Y, and Z were acquired. Some features extracted from the vibration spectra from X-axis were used to compose the dataset. These data were analyzed employing logistic regression, a linear support vector machine (SVM), and an artificial neural network multilayer perceptron (ANN-MLP). We compared these three techniques of machine learning and evaluated which one was able to obtain the most accurate result. Using the ANN-MLP, the system was able to detect all three types of failures inserted, with about 100% of accuracy on the rotor blade condition, 92% for anchorage faults, and about 99% accuracy on cavitation state. As a conclusion, it is demonstrated that this classifier algorithm can be used to process the data from the low-cost MEMS accelerometer in predictive maintenance as an accurate tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.