Background: Submicron particles (SMPs), as novel bionanomaterials, offer complementary benefits to their conventional nano-counterparts. Aim: To explore zinc oxide (ZnO) SMPs' bio-imaging and anticancer potentials. Materials & methods: ZnO SMPs were synthesized into two shapes. Fluorescent spectrum and microscopy were studied for the bioimaging property. Wound healing and Live/Dead assays of glioblastoma cells were characterized for anticancer activities. Results: ZnO SMPs exhibited a high quantum yield (49%) with stable orange fluorescence emission. Both morphologies (most significant in the rod shape) showed tumor-selective properties in cytotoxicity, inhibition to cell migration and attenuating the cancer-upregulated genes. The tumor selectivity was attributed to particle degradation and surface properties on pH dependency. Conclusion: The authors propose that ZnO SMPs could be a promising anticancer drug with tunable, morphology-dependent properties for bioimaging and controlled release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.