The educational framework—Conceive, Design, Implement, and Operate—is part of an international proposal to improve education in the field of engineering, emphasizing how to teach engineering comprehensively, which allows the standardization of skills in professionals as a model for teaching engineering. Moreover, problem-based learning allows students to experiment with challenging situations through cases that simulate natural contexts with their profession. The integration of these two education strategies applied to the Internet of Things (IoT) Education for Industry 4.0 has promoted the generation of teaching challenges. Our education strategy proposes the synergy between laboratory guides and the classroom with the following actions: the content of the topic is presented, followed by the presentation of an issue focused into a realistic context, with practical exercises integrating software and hardware for the deployment of the solution to be reported as a final project. Moreover, undergraduate students in the biomedical engineering area acquired new knowledge about IoT, but at the same time, they may develop skills in the field of programming and structuring different architectures to solve real-world problems. Finally, traditional models of education require new teaching initiatives in the field of biomedical engineering concerning the current challenges and needs of the labor market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.