The demand for accurate localization in complex environments continues to increase despite the difficulty in extracting positional information from measurements. Conventional range-based localization approaches rely on distance estimates obtained from measurements (e.g., delay or strength of received waveforms). This paper goes one step further and develops localization techniques that rely on all probable range values rather than on a single estimate of each distance. In particular, the concept of soft range information (SRI) is introduced, showing its essential role for network localization. We then establish a general framework for SRI-based localization and develop algorithms for obtaining the SRI using machine learning techniques. The performance of the proposed approach is quantified via network experimentation in indoor environments. The results show that SRI-based localization techniques can achieve performance approaching the Cramér-Rao lower bound and significantly outperform the conventional techniques especially in harsh wireless environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.