Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of beta-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.
p38 has been shown to be a critical enzyme in the pro-inflammatory cytokine pathway and is a member of the mitogen-activated protein (MAP) kinase family. While the details for p38 activation and subsequent signal transduction have begun to be elucidated, little is known about the kinetic mechanism for p38. In this study, we have determined the kinetic mechanism for p38 MAP kinase. Data from initial velocity patterns in the presence and absence of a dead-end inhibitor and two triarylimidazole p38 inhibitors were consistent with an ordered sequential mechanism for p38 with protein substrate, glutathione S-transferase-activating transcription factor 2 (GST-ATF2), binding before ATP. The ATP analog, adenylyl methylenediphosphonate (AMP-PCP), and two triarylimidazoles were competitive inhibitors versus ATP and uncompetitive inhibitors versus GST-ATF2. Equilibrium binding studies utilizing a tritiated ATP-competitive inhibitor were also consistent with this mechanism and suggest an inability of ATP to bind to p38 in the absence of protein substrate. Moreover, the Michaelis constant for GST-ATF2 was 12-fold greater than the dissociation constant, indicating that the binding of ATP affected the binding of GST-ATF2. An ordered sequential mechanism with protein substrate binding first is unique to p38 compared to cyclic AMP-dependent protein kinase (cAPK) and most tyrosine kinases and helps to explain the interaction between enzyme, substrates, and inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.