We have previously reported enhanced Ca2+ sensitivity of coronary arteries that are dependent upon collateral circulation for their blood supply. For the current study, we hypothesized that small collateral-dependent arteries would exhibit an enhanced KCl-mediated contractile response attributable to Ca2+ sensitization and increased Ca2+ channel current. Ameroid constrictors were surgically placed around the left circumflex (LCX) artery of female Yucatan miniature swine. Eight weeks post-operatively, pigs were randomized into sedentary or exercise-trained (treadmill run; 5 days/week; 14 weeks) groups. Small coronary arteries (150-300 mm luminal diameter) were isolated from myocardial regions distal to the collateral-dependent LCX and the nonoccluded left anterior descending arteries. Contractile tension and simultaneous measures of both tension and intracellular free Ca2+ levels (fura-2) were measured in response to increasing concentrations of KCl. In addition, whole-cell Ca2+ currents were also obtained. Chronic occlusion enhanced contractile responses to KCl and increased Ca2+ sensitization in collateral-dependent compared to nonoccluded arteries of both sedentary and exercise-trained pigs. In contrast, smooth muscle cell Ca2+ channel current was not altered by occlusion or exercise training. Ca2+/calmodulin-dependent protein kinase II (CaMKII; inhibited by KN-93, 0.3-1 mM) contributed to the enhanced contractile response in collateral-dependent arteries of sedentary pigs whereas both CaMKII and Rho-kinase (inhibited by hydroxyfasudil, 30 mM or Y27632, 10 mM) contributed to increased contraction in exercise-trained animals. Taken together, these data suggest that chronic occlusion leads to enhanced contractile responses to KCl in collateral-dependent coronary arteries via increased Ca2+ sensitization; a response which is further augmented with exercise training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.