Starch-branching enzymes (SBE) break the alpha-1,4 linkage of starch, re-attaching the chain to a glucan chain by an alpha-1,6 bond, altering starch structure. SBEs also facilitate starch accumulation by increasing the number of non-reducing ends on the growing chain. In maize (Zea mays), three isoforms of SBE have been identified. To examine the function of the SBEIIa isoform, a reverse genetics polymerase chain reaction-based screen was used to identify a mutant line segregating for a Mutator transposon within Sbe2a. To locate the insertion within the second exon of Sbe2a, the genomic sequence of Sbe2a containing the promoter and 5' end was isolated and sequenced. Plants homozygous for sbe2a::Mu have undetectable levels of Sbe2a transcripts and SBEIIa in their leaves. Characterization of leaf starch from sbe2a::Mu mutants shows reduced branching similar to yet more extreme than that seen in kernels lacking SBEIIb activity. Characterization of endosperm starch from sbe2a::Mu mutants shows branching that is indistinguishable from wild-type controls. These mutant plants have a visible phenotype resembling accelerated senescence, which was correlated with the Mutator insertion within Sbe2a. This correlation suggests a specific role for SBEIIa in leaves, which may be necessary for normal plant development.
Starch-branching enzymes (SBE) alter starch structure by breaking an alpha-1,4 linkage and attaching the reducing end of the new chain to a glucan chain by an alpha 1,6 bond. In maize, three isoforms of SBE have been identified. In order to examine the function of the SBEI isoform, a reverse-genetics PCR-based screen was used to identify a mutant line segregating for a Mutator transposon within Sbe1. Compared to wild-type controls, Sbe1 transcripts accumulate at extremely low levels in leaves of the homozygous mutant. Antibodies failed to detect SBEI in leaf tissue of mutants or wild-type controls. In contrast, the level of SBEI in endosperm is undetectable in homozygous mutants while easily detected in wild-type controls. Starches extracted from mutant leaves and endosperm have structures indistinguishable from starches of wild-type controls as determined by size-exclusion chromatography (SEC) of intact starch and high-performance SEC of debranched starch. To investigate the possibility of compensation for the lack of SBEI by expression of the homologous sequence reported by Kim etal. (1998), agenomic fragment (Sbe1b) of this sequence was cloned. Northern hybridizations of mutant leaf, root, tassel, endosperm and embryo tissues with non-specific Sbelb probes failed to reveal expression of the homologous sequence. These results suggest that the homologous sequence is not compensating for a lack of SBEI in sbe1::Mu mutants. Further study of this sbel mutation in the presence of other genetic mutations may help to understand the role of SBEI in determining starch structure in leaves and endosperm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.