One model for marine migration of Atlantic salmon Salmo salar proposes that North American and southern European stocks (<62 degrees N) move directly to feeding grounds off west Greenland, then overwinter in the Labrador Sea, whereas northern European stocks (>62 degrees N) utilize the Norwegian Sea. An alternate model proposes that both North American and European stocks migrate in the North Atlantic Subpolar Gyre (NASpG) where S. salar enter the NASpG on their respective sides of the Atlantic, and travel counterclockwise within the NASpG until returning to natal rivers. A review of data accumulated during the last 50 years suggests a gyre model is most probable. Freshwater parr metamorphose into smolts which have morphological, physiological and behavioural adaptations of epipelagic, marine fishes. Former high-seas fisheries were seasonally sequential and moved in the direction of NASpG currents, and catches were highest along the main axis of the NASpG. Marking and discrimination studies indicate mixed continental origin feeding aggregations on both sides of the Atlantic. Marked North American smolts were captured off Norway, the Faroe Islands, east and west Greenland, and adults tagged at the Faroes were recovered in Canadian rivers. Marked European smolts were recovered off Newfoundland and Labrador, west and east Greenland, and adults tagged in the Labrador Sea were captured in European rivers. High Caesium-137 ((137)Cs) levels in S. salar returning to a Quebec river suggested 62.3% had fed at or east of Iceland, whereas levels in 1 sea-winter (SW) Atlantic Canada returnees indicated 24.7% had fed east of the Faroes. Lower levels of (137)Cs in returning 1SW Irish fish suggest much of their growth occurred in the western Atlantic. These data suggest marine migration of S. salar follows a gyre model and is similar to other open-ocean migrations of epipelagic fishes.
Spares, A.D., Reader, J.M., Stokesbury, M.J.W., McDermott, T., Zikovsky, L., Avery, T.S., and Dadswell, M.J. 2007. Inferring marine distribution of Canadian and Irish Atlantic salmon (Salmo salar L.) in the North Atlantic from tissue concentrations of bio-accumulated caesium 137. – ICES Journal of Marine Science, 64: 394–404. Atlantic salmon returning from marine migrations to eastern Canada and western Ireland during 2002 and 2003 were analysed for tissue concentrations of bio-accumulated caesium 137 (137Cs). Salmon from Canadian and Irish waters demonstrated concentrations (0.20 ± 0.14 Bq kg−1 and 0.19 ± 0.09 Bq kg−1, mean ± s.d., respectively) suggesting similar oceanic feeding distributions during migration. Canadian aquaculture escapees had a similar mean tissue concentration (0.28 ± 0.22 Bq kg−1), suggesting migration with wild salmon. However, significantly higher concentrations in 1-sea-winter (1SW) escapees (0.43 ± 0.25 Bq kg−1) may alternatively suggest feeding within local estuaries. High concentrations in some Canadian 1SW salmon indicated trans-Atlantic migration. Low concentrations of Canadian multi-sea-winter (MSW) salmon suggested a feeding distribution in the Labrador and Irminger Seas before homeward migration, because those regions have the lowest surface water 137Cs levels. Estimates of wild Canadian and Irish salmon feeding east of the Faroes (∼8°W) were 14.2% and 10.0% (1SW, 24.7% and 11.5%; MSW, 2.9% and 0.0%), respectively. We propose that most anadromous North Atlantic salmon utilize the North Atlantic Gyre for marine migration and should be classified as a single trans-Atlantic straddling stock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.