Summary
Hexokinase-II (HK-II) catalyzes the first step of glycolysis and also functions as a protective molecule, however, its role in protective autophagy has not been determined. Results showed that inhibition of HK-II diminished, while overexpression of HK-II potentiated, autophagy induced by glucose deprivation in cardiomyocyte and non-cardiomyocyte cells. Immunoprecipitation studies revealed that HK-II binds to and inhibits the autophagy suppressor, mTOR complex 1 (TORC1), and this binding was increased by glucose deprivation. The TOS motif, a scaffold sequence responsible for binding TORC1 substrates, is present in HK-II and mutating it blocked its ability to bind to TORC1 and regulate protective autophagy. The transition from glycolysis to autophagy appears to be regulated by a decrease in glucose-6 phosphate. We suggest that HK-II binds TORC1 as a decoy substrate and provides a previously unrecognized mechanism for switching cells from a metabolic economy based on plentiful energy, to one of conservation, under starvation.
Backgound: Hexokinase II binds to mitochondria and promotes cell survival.Results: Akt phosphorylates HK-II but not the threonine 473 mutant. The phosphomimetic T473D mutant decreases its dissociation from mitochondria induced by G-6P and increases cell viability against stress.Conclusion: Akt phosphorylates HK-II at Thr-473, resulting in increased mitochondrial HK-II and cell protection.Significance: The Akt-HK-II signaling nexus is important in cell survival.
The Ebola virus (EBOV) envelope glycoprotein (GP) is the primary target of protective immunity. Mature GP consists of two disulfide-linked subunits, GP1 and membrane-bound GP2. GP is highly glycosylated with both N-and O-linked carbohydrates. We measured the influences of GP glycosylation on antigenicity, immunogenicity, and protection by testing DNA vaccines comprised of GP genes with deleted N-linked glycosylation sites or with deletions in the central hypervariable mucin region. We showed that mutation of one of the two N-linked GP2 glycosylation sites was highly detrimental to the antigenicity and immunogenicity of GP. Our data indicate that this is likely due to the inability of GP2 and GP1 to dimerize at the cell surface and suggest that glycosylation at this site is required for achieving the conformational integrity of GP2 and GP1. In contrast, mutation of two N-linked sites on GP1, which flank previously defined protective antibody epitopes on GP, may enhance immunogenicity, possibly by unmasking epitopes. We further showed that although deleting the mucin region apparently had no effect on antigenicity in vitro, it negatively impacted the elicitation of protective immunity in mice. In addition, we confirmed the presence of previously identified B-cell and T-cell epitopes in GP but show that when analyzed individually none of them were neither absolutely required nor sufficient for protective immunity to EBOV. Finally, we identified other potential regions of GP that may contain relevant antibody or T-cell epitopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.