The genetic incorporation of the 22nd proteinogenic amino acid, pyrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNAPyl. Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNAPyl. These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
Although noncanonical amino acids (ncAAs) were first incorporated into phage libraries through amber suppression nearly two decades ago, their application for use in drug discovery has been limited due to inherent library bias towards sense-containing phages. Here, we report a technique based on superinfection immunity of phages to enrich amber-containing clones, thus avoiding the observed bias that has hindered incorporation of ncAAs into phage libraries. We then take advantage of this technique for development of active site-directed ligand evolution of peptides, where the ncAA serves as an anchor to direct the binding of its peptides to the target’s active site. To demonstrate this, phage-displayed peptide libraries are developed that contain a genetically encoded butyryl lysine and are subsequently used to select for ligands that bind SIRT2. These ligands are then modified to develop low nanomolar inhibitors of SIRT2.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded Nϵ‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.
By transplanting identity elements into E. coli tRNAfMet, we have engineered an orthogonal initiator tRNA (itRNATy2) that is a substrate for Methanocaldococcus jannaschii TyrRS. We demonstrate that itRNATy2 can initiate translation in vivo with aromatic non‐canonical amino acids (ncAAs) bearing diverse sidechains. Although the initial system suffered from low yields, deleting redundant copies of tRNAfMet from the genome afforded an E. coli strain in which the efficiency of non‐canonical initiation equals elongation. With this improved system we produced a protein containing two distinct ncAAs at the first and second positions, an initial step towards producing completely unnatural polypeptides in vivo. This work provides a valuable tool to synthetic biology and demonstrates remarkable versatility of the E. coli translational machinery for initiation with ncAAs in vivo.
Using the amber suppression approach, four noncanonical amino acids (ncAAs) were used to replace existing amino acids at four positions in lasso peptide microcin J25 (MccJ25). The lasso peptide biosynthesis enzymes tolerated all four ncAAs and produced antibiotics with efficacy equivalent to wild-type in some cases. Given the rapid expansion of the genetically encoded ncAA pool, this study is the first to demonstrate an expedient method to significantly increase the chemical diversity of lasso peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.