Flap Endonuclease-1 (FEN-1) is a structure-specific endonuclease that is critical for the resolution of single-stranded DNA flap intermediates that form during long patch DNA Base Excision Repair (BER). This investigation reports that Plasmodium species encode FEN-1 homologs. Protein sequence analysis revealed the N and I domains of Plasmodium falciparum (PfFEN-1) and Plasmodium yoelii (PyFEN-1) to be homologous to FEN-1 from other species. However, each possessed an extended C domain which had limited homology to apicomplexan FEN-1s and no homology to eukaryotic FEN-1s. A conserved Proliferating Cell Nuclear Antigen (PCNA) binding site was identified at an internal location rather than the extreme C-terminal location typically seen in FEN-1 from other organisms. The endonuclease and exonuclease activities of PfFEN-1 and PyFEN-1 were investigated using recombinant protein produced in Escherichia coli. Pf and PyFEN-1 possessed DNA structure-specific flap endonuclease and 5′→3′ exonuclease activities, similar to FEN-1's from other species. Endonuclease activity was stimulated by Mg +2 or Mn +2 and inhibited by monovalent ions (>20.0 mM). A PfFEN-1 C-terminal truncation mutant lacking the terminal 250 amino acids (PfFEN-1ΔC) had endonuclease activity that was ~130-fold greater (k cat = 1.2x10 −1 ) than full-length PfFEN-1 (k cat = 9.1x10 −4 ) or ~240-fold greater than PyFEN-1 (k cat = 4.9x10 −4 ) in vitro. PfFEN-1 generated a nicked DNA substrate that was ligated by recombinant Pf DNA Ligase I (PfLigI) using an in vitro DNA repair assay. Plasmodium FEN-1s have enzymatic activities similar to other species but contain extended C-termini and a more internally located PCNA binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.