At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.H eat transport is central to the operation of mechanical and electronic machinery, but at the level of individual molecules, the familiar concepts of heat diffusion by phonons in bulk materials no longer apply. Heat is transported through a molecule by discrete molecular vibrations. An emerging area in which vibrational energy transfer becomes crucial is the field of molecular electronics, where longchain molecules attached to tiny electrodes are used to transport and switch electrons. When an electron is transported through a molecule, a portion of the electron's kinetic energy can be lost, appearing as molecular vibrational energy (1). In studies such as this one, in which molecular energy levels are not individually resolved, it is conventional to call such processes "heat dissipation" or "nanoscale thermal transport" (2), even though an equilibrium Boltzmann distribution is not necessarily achieved. Nitzan and co-workers (3) have estimated that 10 to 50% of the electron energies could be converted to heat, so that a power of 10 11 eV/s may be dissipated on a molecular electronic bridge carrying 10 nA under a bias of 1 eV. Using classical and quantum mechanical methods, they and others (1) have calculated steadystate temperatures resulting from such dissipation. Steady-state calculations, however, do not entirely capture the essence of this phenomenon. The energy lost when electrons are transported through a molecular wire in a fraction of a picosecond appears as staccato bursts, up to 1 eV per burst. On a 10-carbon alkane molecule, for instance, 1eV is enough energy to produce a transient temperature jump DT ≈ 225 K. At the temperatures associated with these ultrafast energy bursts, Nitzan and coworkers (3) suggest that, instead of the usual phonon mechanisms prevalent in ordinary thermal conduction processes (1), much of the heat is carried by higher-energy molecular vibrations such as carbon-carbon bending and stretching and carbon-hydrogen bending, which are delocalized over a few carbon segments (3).To study molecular energy transport in the regime of short distances, short time intervals, and large temperature bursts, we have used an ultr...
It is difficult to study molecules at surfaces or interfaces because the total number of molecules is small, and this is especially problematic in studies of interfacial molecular dynamics with high time resolution. Vibrational sum-frequency generation (SFG) spectroscopy, where infrared (IR) and visible pulses are combined at an interface, has emerged as a powerful method to probe interfacial molecular dynamics. The nonlinear coherent nature of SFG helps overcome the sensitivity issues, especially when femtosecond IR pulses are used. With femtosecond pulses, a range of vibrational transitions can be probed simultaneously and high time resolution can be achieved. Ultrafast SFG experiments use three pulses, a pump pulse to generate nonequilibrium conditions with a pair of probe pulses, and two time delay parameters. Mapping SFG intensity as a function of the two time delays creates a two-dimensional surface, where one axis (t(1)) provides information about molecular dynamics driven by the pump pulses, and the other axis (t(2)) about the dynamics of the SFG probing process. We present examples of ultrafast SFG measurements drawn from our studies of heat transport through interfacial molecules that are models for molecular wires in electronic circuits. In these flash-heating experiments, a self-assembled monolayer (SAM) of long-chain molecules adsorbed on a metal surface is subjected to a large amplitude (up to 800 K) temperature jump. Specific vibrational reporter groups on the SAM molecules probed by SFG serve as tiny ultrafast thermometers approximately 1.5 A thick with a approximately 1 ps response time. These SFG thermometers can monitor ultrafast heat transport through the SAM molecules. By varying the lengths of the molecular wires we can tell if the heat is propagating ballistically along the chains, at constant speed, or diffusively. In our analysis of 2D SFG methods, we first describe a simpler situation where the visible probe pulse is effectively infinite in duration. This is the usual way time-resolved SFG measurements are made, and the SFG experiment then becomes a function of a single time delay, the pump-IR probe delay t(1). Unfortunately, in this case the SFG signals have a large contribution from the nonresonant (NR) background generated by the metal surface, which adds a great deal of noise to the data, and the time resolution is limited by the molecule's vibrational dephasing time constant T(2), which is often 1 ps or more. We have recently shown that the NR background can be suppressed using a time delay t(2) between IR and visible probe pulses. In this now 2D SFG method, one would expect that information about the molecular response to the pump pulses would be contained in slices along the t(1) axis, but by simulating the experiment we show that the t(1) and t(2) parameters interact. Changing t(2) to suppress the NR background causes t(1) slices to shift in time. We also show how to improve the time resolution of ultrafast SFG experiments while maintaining NR suppression using femtosecond visibl...
We have shown that it is possible to input heat to one location of a molecule and simultaneously measure its arrival in real time at two other locations, using an ultrafast flash-thermal conductance technique. A femtosecond laser pulse heats an Au layer to approximately 800 degrees C, while vibrational sum-frequency generation spectroscopy (SFG) monitors heat flow into self-assembled monolayers (SAMs) of organic thiolates. Heat flow into the SAM creates thermally induced disorder, which decreases the coherent SFG signal from the CH-stretching transitions. Recent improvements in the technique are described, including the use of nonresonant background-suppressed SFG. The improved apparatus was characterized using alkanethiolate and benzenethiolate SAMs. In the asymmetric 2-methyl benzenethiolate SAM, SFG can simultaneously monitor CH-stretching transitions of both phenyl and methyl groups. The phenyl response to flash-heating occurs at least as fast as the 1 ps time for the Au surface to heat. The methyl response has a faster portion similar to the phenyl response and a slower portion characterized by an 8 ps time constant. The faster portions are attributed to disordering of the methyl-substituted phenyl rings due to thermal excitation of the Au-S adbonds. The slower portion, seen only in the methyl SFG signal, is attributed to heat flow from the metal surface into the phenyl rings and then to the methyl groups.
An ultrafast flash-thermal conductance technique is used to study energy transfer from a flash-heated polycrystalline Au(111) surface to adsorbed thiolate self-assembled monolayers (SAMs). The focus is on understanding energy transfer processes to parts of SAM molecules situated within a few carbon atoms of the Au surface, by probing specific SAM functional groups with vibrational sum-frequency generation (SFG) spectroscopy. The SFG intensity drop after flash-heating for benzenethiol (BT) CH-stretch transitions shows a substantial overshoot lasting several tens of picoseconds before BT and Au equilibrate at a higher temperature estimated at 600 degrees C. The thermal redshift of BT CH-stretch transitions also shows an overshoot. Other aromatic molecules and aliphatic molecules such as cyclohexanethiol (CHT) and hexanethiol (C6) have an overshoot as well. A model is proposed where the overshoot is primarily the result of hot surface electrons existing only during the flash-heating pulses. The intensity overshoot is caused by electron excitation of the probed vibrations and the redshift overshoot is caused by electron excitation of lower-energy vibrations anharmonically coupled to the probed vibration. Although electron excitation causes a substantial perturbation, up to 50% in some cases, of the SFG signal, the total amount of energy deposited into SAMs by electrons is much smaller than the heat transferred by Au surface phonons. Studies of a variety of molecular structures including substituted benzenes, biphenyl and terphenyl, and benzene rings connected to the Au surface by alkane linkers show that the likelihood of electron excitation becomes small for distances of 4-5 carbon atoms above the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.