Because of the renal toxicity, and animal studies showing MKT077 causes eventual irreversible renal toxicity, further recruitment was halted. The study shows, however, that it is feasible to target mitochondria with rhodacyanine analogues, if drugs with higher therapeutic indices could be developed.
Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth and is a new target for the development of antibacterial agents. All previously reported PDF inhibitors with sufficient antibacterial activity share the structural feature of a 2-substituted alkanoyl at the P 1 site. Using a combination of iterative parallel synthesis and traditional medicinal chemistry, we have identified a new class of PDF inhibitors with N-alkyl urea at the P 1 site. Compounds with MICs of <4 g/ml against gram-positive and gram-negative pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae, have been identified. The concentrations needed to inhibit 50% of enzyme activity (IC 50 s) for Escherichia coli Ni-PDF were <0.1 M, demonstrating the specificity of the inhibitors. In addition, these compounds were very selective for PDF, with IC 50 s of consistently >200 M for matrilysin and other mammalian metalloproteases. Structure-activity relationship analysis identified preferred substitutions resulting in improved potency and decreased cytotoxity. One of the compounds (VRC4307) was cocrystallized with PDF, and the enzymeinhibitor structure was determined at a resolution of 1.7 Å. This structural information indicated that the urea compounds adopt a binding position similar to that previously determined for succinate hydroxamates. Two compounds, VRC4232 and VRC4307, displayed in vivo efficacy in a mouse protection assay, with 50% protective doses of 30.8 and 17.9 mg/kg of body weight, respectively. These N-alkyl urea hydroxamic acids provide a starting point for identifying new PDF inhibitors that can serve as antimicrobial agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.