SummaryThe vitamin D receptor (VDR) functions as an obligate heterodimer with the retinoid X receptor (RXR). These nuclear receptors (NRs) are multidomain proteins and it is unclear how various domains interact with one another within the NR heterodimer. Here we show that binding of intact heterodimer to DNA alters the receptor dynamics in regions remote from the DNA binding domains (DBDs), including the coactivator binding surfaces of both coreceptors, and the sequence of the DNA response element can specify the dynamics. Furthermore, agonist binding to the heterodimer results in changes in the stability of the VDR DBD, indicating that ligand itself may play a role in DNA recognition. These data suggest a mechanism by which NRs can display promoter-specific activity and impart differential effects on various target genes, which provides mechanistic insight for the function of selective NR modulators.
Interaction of the estrogen receptor͞ligand complex with a DNA estrogen response element is known to regulate gene transcription. In turn, specific conformations of the receptor-ligand complex have been postulated to influence unique subsets of estrogen-responsive genes resulting in differential modulation and, ultimately, tissue-selective outcomes. The estrogen receptor ligands raloxifene and tamoxifen have demonstrated such tissue-specific estrogen agonist͞antagonist effects. Both agents antagonize the effects of estrogen on mammary tissue while mimicking the actions of estrogen on bone. However, tamoxifen induces significant stimulation of uterine tissue whereas raloxifene does not. We postulate that structural differences between raloxifene and tamoxifen may influence the conformations of their respective receptor͞ligand complexes, thereby affecting which estrogen-responsive genes are modulated in various tissues. These structural differences are 4-fold: (A) the presence of phenolic hydroxyls, (B) different substituents on the basic amine, (C) incorporation of the stilbene moiety into a cyclic benzothiophene framework, and (D) the imposition of a carbonyl ''hinge'' between the basic amine-containing side chain and the olefin. A series of raloxifene analogs that separately exemplify each of these differences have been prepared and evaluated in a series of in vitro and in vivo assays. This strategy has resulted in the development of a pharmacophore model that attributes the differences in effects on the uterus between raloxifene and tamoxifen to a low-energy conformational preference imparting an orthogonal orientation of the basic side chain with respect to the stilbene plane. This three-dimensional array is dictated by a single carbon atom in the hinge region of raloxifene. These data indicate that differences in tissue selective actions among benzothiophene and triarylethylene estrogen receptor modulators can be ascribed to discrete ligand conformations.
Wortmannin, a fungal metabolite, was identified as a potent inhibitor (IC50 = 4.2 nM) of phosphatidylinositol 3-kinase (PI 3-kinase). Due to the importance of PI 3-kinase in several intracellular signaling pathways, structure-activities studies on wortmannin analogs were performed in an effort to understand the structural requirements necessary for PI 3-kinase inhibition. Since wortmannin is an irreversible inhibitor of PI 3-kinase, it was postulated that covalent attachment at the electrophilic C-21 site was a possible mode of action for PI 3-kinase inhibition. We have prepared various wortmannin analogs which address the possibility of this mechanism. Of particular interest are compounds which affect the C-21 position of wortaminnin either sterically or electronically. Our results support the conclusion that nucleophilic addition by the kinase onto the C-21 position of wortmannin is required for inhibition of PI 3-kinase by wortmannin analogs. Additionally, we have prepared several D-ring analogs of wortmannin, and their activities are reported herein. We conclude that the wortmannin D ring is an important recognition site since modifications have such a dramatic effect on inhibitor potency. Finally, the identification of 17beta-hydroxywortmannin represents the first reported subnanomolar inhibitor of PI 3-kinase. These studies, along with in vivo antitumor experiments, suggest that the mechanism of PI 3-kinase inhibition correlates to the associated toxicity observed with wortmannin-based inhibitors of PI 3-kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.