The fast Fourier transform (FFT) is used widely in signal processing for efficient computation of the FT of finite-length signals over a set of uniformly spaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e., a nonuniform FT. Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents an interpolation method for the nonuniform FT that is optimal in the min-max sense of minimizing the worst-case approximation error over all signals of unit norm. The proposed method easily generalizes to multidimensional signals. Numerical results show that the min-max approach provides substantially lower approximation errors than conventional interpolation methods. The min-max criterion is also useful for optimizing the parameters of interpolation kernels such as the Kaiser-Bessel function.
The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all parameters simultaneously, which has two drawbacks: 1) slow convergence, and 2) difficult maximization steps due to coupling when smoothness penalties are used. This paper describes the space-alternating generalized EM (SAGE) method, which updates the parameters sequentially by alternating between several small hidden-data spaces defined by the algorithm designer. We prove that the sequence of estimates monotonically increases the penalized-likelihood objective, we derive asymptotic convergence rates, and we provide sufficient conditions for monotone convergence in norm. Two signal processing applications illustrate the method: estimation of superimposed signals in Gaussian noise, and image reconstruction from Poisson measurements. In both applications, our SAGE algorithms easily accommodate smoothness penalties and converge faster than the EM algorithms.
This paper describes a statistical image reconstruction method for X-ray computed tomography (CT) that is based on a physical model that accounts for the polyenergetic X-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. We assume that the object consists of a given number of nonoverlapping materials, such as soft tissue and bone. The attenuation coefficient of each voxel is the product of its unknown density and a known energy-dependent mass attenuation coefficient. We formulate a penalized-likelihood function for this polyenergetic model and develop an ordered-subsets iterative algorithm for estimating the unknown densities in each voxel. The algorithm monotonically decreases the cost function at each iteration when one subset is used. Applying this method to simulated X-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artifacts.
In magnetic resonance imaging, magnetic field inhomogeneities cause distortions in images that are reconstructed by conventional fast Fourier trasform (FFT) methods. Several noniterative image reconstruction methods are used currently to compensate for field inhomogeneities, but these methods assume that the field map that characterizes the off-resonance frequencies is spatially smooth. Recently, iterative methods have been proposed that can circumvent this assumption and provide improved compensation for off-resonance effects. However, straightforward implementations of such iterative methods suffer from inconveniently long computation times. This paper describes a tool for accelerating iterative reconstruction of field-corrected MR images: a novel time-segmented approximation to the MR signal equation. We use a min-max formulation to derive the temporal interpolator. Speedups of around 60 were achieved by combining this temporal interpolator with a nonuniform fast Fourier transform with normalized root mean squared approximation errors of 0.07%. The proposed method provides fast, accurate, field-corrected image reconstruction even when the field map is not smooth.
The ordered subsets EM (OSEM) algorithm has enjoyed considerable interest for emission image reconstruction due to its acceleration of the original EM algorithm and ease of programming. The transmission EM reconstruction algorithm converges very slowly and is not used in practice. In this paper, we introduce a simultaneous update algorithm called separable paraboloidal surrogates (SPS) that converges much faster than the transmission EM algorithm. Furthermore, unlike the 'convex algorithm' for transmission tomography, the proposed algorithm is monotonic even with nonzero background counts. We demonstrate that the ordered subsets principle can also be applied to the new SPS algorithm for transmission tomography to accelerate 'convergence', albeit with similar sacrifice of global convergence properties as for OSEM. We implemented and evaluated this ordered subsets transmission (OSTR) algorithm. The results indicate that the OSTR algorithm speeds up the increase in the objective function by roughly the number of subsets in the early iterates when compared to the ordinary SPS algorithm. We compute mean square errors and segmentation errors for different methods and show that OSTR is superior to OSEM applied to the logarithm of the transmission data. However, penalized-likelihood reconstructions yield the best quality images among all other methods tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.