Pertussis, or whooping cough, has recently reemerged as a major public health threat despite high levels of vaccination against the etiological agent, Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into virulence factor function. We also discuss the changing epidemiology of pertussis and the challenges of vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies.
Gram‐positive bacteria pose a serious healthcare threat. The growing antibiotic resistance epidemic creates a dire need for new antibiotic targets. The sortase family of enzymes is a promising target for antimicrobial therapy. This review covers the current knowledge of the mechanism, substrate specificity, and inhibitory studies of the Gram‐positive bacter a enzyme sortase. © 2010 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 94: 385–396, 2010.
Sortases are a family of Gram-positive bacterial transpeptidases that anchor secreted proteins to bacterial cell surfaces. These include many proteins that play critical roles in the virulence of Gram-positive bacterial pathogens such that sortases are attractive targets for development of novel antimicrobial agents. All Gram-positive pathogens express a "housekeeping" sortase that recognizes the majority of secreted proteins containing an LPXTG wall-sorting motif and covalently attaches these to bacterial cell wall peptidoglycan. Many Gram-positive pathogens also express additional sortases that link a small number of proteins, often with variant wall-sorting motifs, to either other surface proteins or peptidoglycan. To better understand the mechanisms of catalysis and substrate recognition by the housekeeping sortase produced by the important human pathogen Streptococcus pyogenes, the crystal structure of this protein has been solved and its transpeptidase activity established in vitro. The structure reveals a novel arrangement of key catalytic residues in the active site of a sortase, the first that is consistent with kinetic analysis. The structure also provides a complete description of residue positions surrounding the active site, overcoming the limitation of localized disorder in previous structures of sortase A-type proteins. Modification of the active site Cys through oxidation to its sulfenic acid form or by an alkylating reagent supports a role for a reactive thiol/ thiolate in the catalytic mechanism. These new insights into sortase structure and function could have important consequences for inhibitor design.Cell wall-anchored proteins play critical roles in the virulence of most Gram-positive bacterial pathogens by acting as adhesins or invasins and/or interfering with various arms of the host innate or specific immune defenses. The vast majority of these virulence proteins are retained at the bacterial surface after secretion by a mechanism that involves the covalent linkage of target proteins to the peptidoglycan layer of the cell wall. This linkage is catalyzed by membrane-associated transpeptidases called sortases (1, 2). Proteins destined for cell-surface attachment contain a sorting signal recognized by these enzymes. As this mechanism is unique to Gram-positive pathogens, inhibiting the reaction is an attractive target for the development of novel antibacterials (3, 4). The sortase-mediated transpeptidation reaction is also being increasingly used in a variety of biotechnology applications (5-8).The sorting signal that targets proteins for cell surface attachment is located at the C terminus of substrates and comprises a pentapeptide motif, typically LPXTG (where X is any amino acid), followed by a hydrophobic region and a tail of positively charged residues that locates the substrate to the cell surfacefollowingsecretion(2,9).Inonecurrentmodelofsortasedependent transpeptidation, the LPXTG motif is specifically recognized by the enzyme (10), and the thiolate group of an essential active sit...
Laboratory models are a cornerstone of modern microbiology, but the accuracy of these models has not been systematically evaluated. As a result, researchers often choose models based on intuition or incomplete data. We propose a general quantitative framework to assess model accuracy from RNA sequencing data and use this framework to evaluate models of Pseudomonas aeruginosa cystic fibrosis (CF) lung infection. We found that an in vitro synthetic CF sputum medium model and a CF airway epithelial cell model had the highest genome-wide accuracy but underperformed on distinct functional categories, including porins and polyamine biosynthesis for the synthetic sputum medium and protein synthesis for the epithelial cell model. We identified 211 “elusive” genes that were not mimicked in a reference strain grown in any laboratory model but found that many were captured by using a clinical isolate. These methods provide researchers with an evidence-based foundation to select and improve laboratory models. IMPORTANCE Laboratory models have become a cornerstone of modern microbiology. However, the accuracy of even the most commonly used models has never been evaluated. Here, we propose a quantitative framework based on gene expression data to evaluate model performance and apply it to models of Pseudomonas aeruginosa cystic fibrosis lung infection. We discovered that these models captured different aspects of P. aeruginosa infection physiology, and we identify which functional categories are and are not captured by each model. These methods will provide researchers with a solid basis to choose among laboratory models depending on the scientific question of interest and will help improve existing experimental models.
Bordetella filamentous hemagglutinin (FHA), a primary component of acellular pertussis vaccines, contributes to virulence, but how it functions mechanistically is unclear. FHA is first synthesized as an ~370-kDa preproprotein called FhaB. Removal of an N-terminal signal peptide and a large C-terminal prodomain (PD) during secretion results in “mature” ~250-kDa FHA, which has been assumed to be the biologically active form of the protein. Deletion of two C-terminal subdomains of FhaB did not affect production of functional FHA, and the mutant strains were indistinguishable from wild-type bacteria for their ability to adhere to the lower respiratory tract and to suppress inflammation in the lungs of mice. However, the mutant strains, which produced altered FhaB molecules, were eliminated from the lower respiratory tract much faster than wild-type B. bronchiseptica, suggesting a defect in resistance to early immune-mediated clearance. Our results revealed, unexpectedly, that full-length FhaB plays a critical role in B. bronchiseptica persistence in the lower respiratory tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.