[1] Results from a rain and gas exchange experiment (Bio2 RainX III) at the Biosphere 2 Center demonstrate that turbulence controls the enhancement of the air-sea gas transfer rate (or velocity) k during rainfall, even though profiles of the turbulent dissipation rate e are strongly influenced by near-surface stratification. The gas transfer rate scales with e 1 = 4 for a range of rain rates with broad drop size distributions. The hydrodynamic measurements elucidate the mechanisms responsible for the rain-enhanced k results using SF 6 tracer evasion and active controlled flux technique. High-resolution k and turbulence results highlight the causal relationship between rainfall, turbulence, stratification, and air-sea gas exchange. Profiles of e beneath the air-sea interface during rainfall, measured for the first time during a gas exchange experiment, yielded discrete values as high as 10 À2 W kg À1 . Stratification modifies and traps the turbulence near the surface, affecting the enhancement of the transfer velocity and also diminishing the vertical mixing of mass transported to the air-water interface. Although the kinetic energy flux is an integral measure of the turbulent input to the system during rain events, e is the most robust response to all the modifications and transformations to the turbulent state that follows. The Craig-Banner turbulence model, modified for rain instead of breaking wave turbulence, successfully predicts the near-surface dissipation profile at the onset of the rain event before stratification plays a dominant role. This result is important for predictive modeling of k as it allows inferring the surface value of e fundamental to gas transfer.
When rain falls onto a large body of water it produces dominating underwater sound over a broad range of audio frequencies. Laboratory studies using more than 1000 single drops, covering the complete size range of actual rain drops at their terminal speeds, have now shown that the complete underwater spectrum of rainfall sound can be dissected into the impact and microbubble sounds produced by four acoustically distinctive ranges of drop diameters D. These are defined as "minuscule" drops (D<0.8 mm), "small" drops (0.8 mm
Rainfall over the ocean is one of the most important climatic parameters for both oceanic and atmospheric science. Traditional accumulation-type rain gauges are difficult to operate at sea, and so an alternate technique using underwater sound has been developed. The technique of passive monitoring of the ocean rainfall using ambient sound depends on the accuracy of sound pressure level (SPL) detection. Consequently, absolute calibration of the hydrophone is desirable, but is difficult to achieve because typically the geometry of the laboratory calibration process does not fit the measurement geometry over the ocean. However, if one assumes that the sound signal that is generated by wind is universal then the wind signal can be used to provide an absolute calibration. Over 90 buoy months of ambient sound spectra have been collected on the Tropical Atmosphere Ocean (TAO) project array since 1998. By applying the Vagle et al. wind speed algorithm, the instrument noises and sensitivity bias for the absolute calibration of each acoustic rain gauge (ARG) are obtained. An acoustic discrimination process is developed to retrieve the pure geophysical signals. A new single-frequency rainfall-rate algorithm is proposed after comparing the ARG data with R.M. Young self-siphoning rain gauge data, collocated on the same moorings. The acoustic discrimination process and the rainfall algorithm are further tested at two other locations and are compared with R.M. Young rain gauges and the Tropical Rain Measuring Mission (TRMM) product 3B42. The acoustic rainfall accumulations show the comparable results in both long (year) and short (hours) time scales.
Wind and rain generated ambient sound from the ocean surface represents the background baseline of ocean noise. Understanding these ambient sounds under different conditions will facilitate other scientific studies. For example, measurement of the processes producing the sound, assessment of sonar performance, and helping to understand the influence of anthropogenic generated noise on marine mammals. About 90 buoy-months of ocean ambient sound data have been collected using Acoustic Rain Gauges in different open-ocean locations in the Tropical Pacific Ocean. Distinct ambient sound spectra for various rainfall rates and wind speeds are identified through a series of discrimination processes. Five divisions of the sound spectra associated with different sound generating mechanisms can be predicted using wind speed and rainfall rate as input variables. The ambient sound data collected from the Intertropical Convergence Zone are used to construct the prediction algorithms, and are tested on the data from the Western Pacific Warm Pool. This physically based semi-empirical model predicts the ambient sound spectra (0.5-50 kHz) at rainfall rates from 2-200 mm/h and wind speeds from 2 to 14 m/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.