Gait modification is a nonsurgical approach for reducing the external knee adduction torque in patients with knee osteoarthritis (OA). The magnitude of the first adduction torque peak in particular is strongly associated with knee OA progression. While toeing out has been shown to reduce the second peak, no clinically realistic gait modifications have been identified that effectively reduce both peaks simultaneously. This study predicts novel patient-specific gait modifications that achieve this goal without changing the foot path. The modified gait motion was designed for a single patient with knee OA using dynamic optimization of a patient-specific, full-body gait model. The cost function minimized the knee adduction torque subject to constraints limiting how much the new gait motion could deviate from the patient's normal gait motion. The optimizations predicted a "medialthrust" gait pattern that reduced the first adduction torque peak between 32% and 54% and the second peak between 34% and 56%. The new motion involved three synergistic kinematic changes: slightly decreased pelvis obliquity, slightly increased leg flexion, and slightly increased pelvis axial rotation. After gait retraining, the patient achieved adduction torque reductions of 39% to 50% in the first peak and 37% to 55% in the second one. These reductions are comparable to those reported after high tibial osteotomy surgery. The associated kinematic changes were consistent with the predictions except for pelvis obliquity, which showed little change. This study demonstrates that it is feasible to design novel patient-specific gait modifications with potential clinical benefit using dynamic optimization of patient-specific, full-body gait models. Further investigation is needed to assess the extent to which similar gait modifications may be effective for other patients with knee OA.
SUMMARYPresent day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima-large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available.
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.