Rayleigh scattering cross sections are measured for nine combustion species (Ar, N2, O2, CO2, CO, H2, H2O, CH4, and C3H8) at wavelengths of 266, 355, and 532 nm and at temperatures ranging from 295 to 1525 K. Experimental results show that, as laser wavelengths become shorter, polarization effects become important and the depolarization ratio of the combustion species must be accounted for in the calculation of the Rayleigh scattering cross section. Temperature effects on the scattering cross section are also measured. Only a small temperature dependence is measured for cross sections at 355 nm, resulting in a 2-8% increase in cross section at temperatures of 1500 K. This temperature dependence increases slightly for measurements at 266 nm, resulting in a 5-11% increase in cross sections at temperatures of 1450 K.
a b s t r a c tThe transient injection and subsequent auto-ignition of a methane jet issuing into a laminar coflow of hot exhaust gas from a lean premixed hydrogen air flame was studied using high-speed planar Rayleigh scattering, yielding two-dimensional measurements of mixture fraction, temperature and scalar dissipation rate with high spatio-temporal resolution. The temporal development of the mixing field between the transient fuel jet and the surrounding coflow prior to the occurrence of auto-ignition was examined at a sampling rate of 10 kHz. The impact of the transient jet development on numerical modeling of this test case is discussed. It was found that auto-ignition occurred after the jet transitioned from a transient state into the steady state, thus eliminating the need to model the complete transient fuel injection when the primary focus is on the onset of auto-ignition.Simultaneous high-speed OH * chemiluminescence from two viewing angles was applied to gain 3D-information of the ignition kernel location. This information allowed the selection and analysis of ignition events where the initial kernel formed inside the laser light sheet. Detailed analysis of the dynamics of a single ignition event, as well as statistical analysis of multiple ignition events based on a joint probability density approach, indicated that the ignition kernels occurred at very lean mixture fractions and at locations with low scalar dissipation rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.