Electron spin echo envelope modulation (ESEEM) spectroscopy, with Mn2+ and VO2+ as paramagnetic probes, was used to examine active-site structures at the protein-based divalent cation site of rabbit muscle pyruvate kinase in the presence of substrates, products, and the requisite inorganic cofactors. Two different VO.protein complexes were clearly distinguished, which differed with respect to coordination of the active-site lysine to VO2+. Lysine coordination was sensitive to the presence of pyruvate and phosphoenolpyruvate (PEP) and to the nature of the monovalent cation. In the presence of MgATP and oxalate, a 4-MHz 31P contact interaction was observed, which indicates that the ATP is directly coordinated to Mn2+ at the protein-based site. No 31P contact interactions were observed, however, in the presence of PEP. Pyruvate was determined to be a bidentate ligand of VO2+, on the basis of the observation of 2.2- and 5.4-MHz 13C contact interactions between VO2+ and [1-13C]pyruvate and [2-13C]pyruvate, respectively. Magnetic coupling between VO2+ or Mn2+ and 23Na, 39K, and 133Cs was observed, demonstrating the close proximity of the monovalent cation and the protein-based divalent cation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.