Background
Mesenchymal stem cells hold promise for cardiovascular regenerative therapy. Derivation of these cells from the adipose tissue might be easier compared to bone marrow. However, the in vivo fate and function of adipose stromal cells (ASC) in the infarcted heart has never been compared directly to bone marrow derived mesenchymal cells (MSC).
Methods
ASC and MSC were isolated from transgenic FVB mice with β-actin promoter driving firefly luciferase and green fluorescent protein (Fluc-GFP) double fusion reporter gene, and were characterized using flow cytometry, microscopy, bioluminescence imaging (BLI) and luminometry. FVB mice (n=8/group) underwent myocardial infarction followed by intramyocardial injection of 5×105 ASC, MSC, fibroblasts (Fibro, positive control), or saline (negative control). Cell survival was measured using BLI for 6 weeks and cardiac function was monitored by echocardiography and pressure-volume (PV) analysis. Ventricular morphology was assessed using histology.
Results
ASC and MSC were CD34−, CD45−, c-Kit−, CD90+, Sca-1+, shared similar morphology, and had a population doubling time of ∼2 days. Cells expressed Fluc reporter genes in a number-dependent fashion, as confirmed by luminometry. After cardiac transplantation, both cell types showed drastic donor cell death within 4−5 weeks. Furthermore, transplantation of either cell type was not capable of preserving ventricular function and dimensions, as confirmed by PV-loops and histology.
Conclusion
This is the first study comparing the in vivo behavior of both cell types in the infarcted heart. ASC and MSC do not tolerate well in the cardiac environment, resulting in acute donor cell death and a subsequent loss of cardiac function similar to control groups.
Background-Interleukin-17 , which is predominantly produced by T helper 17 cells distinct from T helper 1 or T helper 2 cells, participates in the pathogenesis of infectious, autoimmune, and allergic disorders. However, the precise role in allograft rejection remains uncertain. In the present study, we investigated the role of IL-17 in acute allograft rejection using IL-17-deficient mice. Methods and Results-Donor hearts from FVB mice were heterotopically transplanted into either C57BL/6J-IL-17-deficient (IL-17
Three alpha-subunit isoforms of the sodium pump, which is the receptor for cardiac glycosides, are expressed in human heart. The aim of this study was to determine whether these isoforms have distinct affinities for the cardiac glycoside ouabain. Equilibrium ouabain binding to membranes from a panel of different human tissues and cell lines derived from human tissues was compared by an F statistic to determine whether a single population of binding sites or two populations of sites with different affinities would better fit the data. For all tissues, the single-site model fit the data as well as the two-site model. The mean equilibrium dissociation constant (K(d)) for all samples calculated using the single-site model was 18 +/- 6 nM (mean +/- SD). No difference in K(d) was found between nonfailing and failing human heart samples, although the maximum number of binding sites in failing heart was only approximately 50% of the number of sites in nonfailing heart. Measurement of association rate constants and dissociation rate constants confirmed that the binding affinities of the different human alpha-isoforms are similar to each other, although calculated K(d) values were lower than those determined by equilibrium binding. These results indicate both that the affinity of all human alpha-subunit isoforms for ouabain is similar and that the increased sensitivity of failing human heart to cardiac glycosides is probably due to a reduction in the number of pumps in the heart rather than to a selective inhibition of a subset of pumps with different affinities for the drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.