Surface rupture in the 2019 Ridgecrest, California, earthquake sequence occurred along two orthogonal cross faults and includes dominantly left-lateral and northeast-striking rupture in the Mw 6.4 foreshock and dominantly right-lateral and northwest-striking rupture in the Mw 7.1 mainshock. We present >650 field-based, surface-displacement observations for these ruptures and synthesize our results into cumulative along-strike displacement distributions. Using these data, we calculate displacement gradients and compare our results with historical strike-slip ruptures in the eastern California shear zone. For the Mw 6.4 rupture, we report 96 displacements measured along 18 km of northeast-striking rupture. Cumulative displacement curves for the rupture yield a mean left-lateral displacement of 0.3–0.5 m and maximum of 0.7–1.6 m. Net mean vertical displacement based on the difference of down-to-the-west (DTW) and down-to-the-east (DTE) displacement curves is close to zero (0.02 m DTW). The Mw 6.4 displacement distribution shows that the majority of displacement occurred southwest of the intersection with the Mw 7.1 rupture. The Mw 7.1 rupture is northwest-striking and 50 km long based on 576 field measurements. Displacement curves indicate a mean right-lateral displacement of 1.2–1.7 m and a maximum of 4.3–7.0 m. Net vertical displacement in the rupture averages 0.3 m DTW. The Mw 7.1 displacement distributions demonstrate that maximum displacement occurred along a 12-km-long portion of the fault near the Mw 7.1 epicenter, releasing 66% of the geologically based seismic moment along 24% of the total rupture length. Using our displacement distributions, we calculate kilometer-scale displacement gradients for the Mw 7.1 rupture. The steepest gradients (∼1–3 m/km) flank the 12-km-long region of maximum displacement. In contrast, gradients for the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes are <0.6 m/km. Our displacement distributions are important for understanding the influence of cross-fault rupture on Mw 6.4 and 7.1 rupture length and displacement and will facilitate comparisons with distributions generated remotely and at broader scales.
The Mw 6.4 and Mw 7.1 Ridgecrest earthquake sequence occurred on 4 and 5 July 2019 within the eastern California shear zone of southern California. Both events produced extensive surface faulting and ground deformation within Indian Wells Valley and Searles Valley. In the weeks following the earthquakes, more than six dozen scientists from government, academia, and the private sector carefully documented the surface faulting and ground-deformation features. As of December 2019, we have compiled a total of more than 6000 ground observations; approximately 1500 of these simply note the presence or absence of fault rupture or ground failure, but the remainder include detailed descriptions and other documentation, including tens of thousands of photographs. More than 1100 of these observations also include quantitative field measurements of displacement sense and magnitude. These field observations were supplemented by mapping of fault rupture and ground-deformation features directly in the field as well as by interpreting the location and extent of surface faulting and ground deformation from optical imagery and geodetic image products. We identified greater than 68 km of fault rupture produced by both earthquakes as well as numerous sites of ground deformation resulting from liquefaction or slope failure. These observations comprise a dataset that is fundamental to understanding the processes that controlled this earthquake sequence and for improving earthquake hazard estimates in the region. This article documents the types of data collected during postearthquake field investigations, the compilation effort, and the digital data products resulting from these efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.