Abstract. In this paper, we present an efficient algorithm for finding overlapping communities in social networks. Our algorithm does not rely on the contents of the messages and uses the communication graph only. The knowledge of the structure of the communities is important for the analysis of social behavior and evolution of the society as a whole, as well as its individual members. This knowledge can be helpful in discovering groups of actors that hide their communications, possibly for malicious reasons. Although the idea of using communication graphs for identifying clusters of actors is not new, most of the traditional approaches, with the exception of the work by Baumes et al, produce disjoint clusters of actors, de facto postulating that an actor is allowed to belong to at most one cluster. Our algorithm is significantly more efficient than the previous algorithm by Baumes et al; it also produces clusters of a comparable or better quality.
Abstract. We describe models and efficient algorithms for detecting groups (communities) functioning in communication networks which attempt to hide their functionality -hidden groups. Our results reveal the properties of the background network activity that make detection of the hidden group easy, as well as those that make it difficult.
Dramatic technological advances in the field of genomics have made it possible to sequence the complete genomes of many different organisms. With this overwhelming amount of data at hand, biologists are now confronted with the challenge of understanding the function of the many different elements of the genome. One of the best places to start gaining insight on the mechanisms by which the genome controls an organism is the study of embryogenesis. There are multiple and interrelated layers of information that must be established in order to understand how the genome controls the formation of an organism. One is cell lineage which describes how patterns of cell division give rise to different parts of an organism. Another is gene expression which describes when and where different genes are turned on. Both of these data types can now be acquired using fluorescent laser-scanning (confocal or 2-photon) microscopy of embryos tagged with fluorescent proteins to generate 3D movies of developing embryos. However, analyzing the wealth of resulting images requires tools capable of interactively visualizing several different types of information as well as being scalable to terabytes of data. This paper describes how the combination of existing large data volume visualization and the new Titan information visualization framework of the Visualization Toolkit (VTK) can be applied to the problem of studying the cell lineage of an organism. In particular, by linking the visualization of spatial and temporal gene expression data with novel ways of visualizing cell lineage data, users can study how the genome regulates different aspects of embryonic development.
We describe our efforts to develop a software package, Arbor, that will enable scientific research in all aspects of comparative biology. This software will enable developmental biologists, geneticists, ecologists, geographers, paleobiologists, educators, and students to analyze diverse types of comparative data at multiple phylogenetic and spatiotemporal scales using an intuitive visual interface. Arbor’s user-defined workflows will be exported and shared so that entire analyses can be quickly replicated with new or updated data. Arbor will also be designed to easily and seamlessly expand to include novel analytical tools as they are developed. Here we describe the core components of Arbor, as well as provide details of one proposed test case to illustrate the software’s key functionality.
We present an expansion of the popular open source Visualization Toolkit (VTK) to support the ingestion, processing, and display of informatics data. The result is a flexible, component-based pipeline framework for the integration and deployment of algorithms in the scientific and informatics fields. This project, code named "Titan", is one of the first efforts to address the unification of information and scientific visualization in a systematic fashion. The result includes a wide range of informatics-oriented functionality: database access, graph algorithms, graph layouts, views, charts, UI components and more. Further, the data distribution, parallel processing and client/server capabilities of VTK provide an excellent platform for scalable analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.