BackgroundThe incidence of testicular germ cell tumors (TGCT), the most common cancer in men aged 15 to 45 years, has doubled over the last 30 years in developed countries. Reasons remain unclear but a role of environmental factors, especially during critical periods of development, is strongly suspected. Reliable data on environmental exposure during this critical time period are sparse. Little is known on whether it could be a combined effect of early and later-life exposures.Methods/DesignOur research aims to study the association between TGCT risk and pesticide exposures (domestic, occupational and environmental) during critical time periods of development and combined early and later-life exposures. The study design, developed during a 2-year pilot study, is a multicenter case–control study of 500 cases (ascertained through histology) and 1000 fertile/fecund controls recruited through 21 French ‘Centres d’Etude et de Conservation des Œufs et de Sperme humain’ (CECOS). Trained professional interviewers interview the subjects and their mothers by phone. Using a geographic information system developed and tested for application in this study design, environmental pesticides exposure assessment is based on life-time residential history. Occupational pesticides exposures are assessed by an industrial hygienist based on parents’ occupations and tasks. Exposures during the prenatal period, early childhood and puberty are focused. A blood sample is collected from each participant to assess genetic polymorphisms known to be associated with TGCT risk, as well as to explore gene-environment interactions.DiscussionThe results of our study will contribute to better understanding the causes of TGCT and the rapid increase of its incidence. We explore the effect of combined early and later-life pesticides exposure from multiple sources, as well as potential gene-environment interactions that have until now been rarely studied for TGCT. Our design allows future pooled studies and the bio-bank allows additional genetic or toxicological analyses.
This paper analyzes the smart strategies of European cities through the dynamic capabilities approach. We develop a clustering of smart cities based on the activities implemented by the cities. Our methodology considers three steps. First, we establish an empirical assessment of the smart dimensions for 40 European cities. Then, we categorize and interpret core capabilities via a principal component analysis. Finally, we highlight a hierarchical ascending classification identifying three relevant groups of cities. As a result, the first cluster represents cities with emerging smart strategies. The second cluster regroups international metropolises, which have technology-oriented strategies to deal with specific challenges. The third cluster stands for middle-sized European cities with a good quality of life. Our outcomes show that there is not just one smart city but several smart cities emerging according to the cities’ environment. These findings enrich the analysis of smart cities’ dynamic capabilities and point out how these strategies make cities sustainable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.