Down syndrome (DS) is the most common genetic cause of significant cognitive disability. We hypothesize that by identifying metabolic alterations associated with cognitive impairment, it may be possible to develop medical or dietary interventions to ameliorate cognitive disabilities in persons with DS. Evidence suggests that one-carbon/transsulfuration (1C-TS) metabolism is abnormal in persons with DS. Cystathionine beta-synthase (CBS) plays a critical role in this metabolic system. The gene for CBS is on human chromosome 21, and there is evidence of elevated CBS enzyme activity in tissues and cells from individuals with DS. To analyze the possible role of CBS in Down syndrome, we have produced several lines of transgenic mice expressing the human CBS gene. We describe the use of Florescence Situ Hybridization (FISH) analysis to characterize the transgene insertion site for each line. Our initial expression analysis of each transgenic line by RT-PCR shows that the tissue specificity of human CBS mRNA levels in these mice may differ from the tissue specificity of mouse CBS mRNA levels in the same animals. These mice will be invaluable for assessing the regulation of the CBS gene and the role of CBS in cognition. They can also be used to develop therapies that target abnormalities in 1C-TS metabolism to improve cognition in persons with DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.