The "many-to-many" hypothesis proposes that visual object processing is supported by distributed circuits that overlap for different object categories. For faces and words the hypothesis posits that both posterior fusiform regions contribute to both face and visual word perception and predicts that unilateral lesions impairing one will affect the other. However, studies testing this hypothesis have produced mixed results. We evaluated visual word processing in subjects with developmental prosopagnosia, a condition linked to right posterior fusiform abnormalities. Ten developmental prosopagnosic subjects performed a word-length effect task and a task evaluating the recognition of word content across variations in text style, and the recognition of style across variations in word content. All subjects had normal word-length effects. One had prolonged sorting time for word recognition in handwritten stimuli. These results suggest that the deficit in developmental prosopagnosia is unlikely to affect visual word processing, contrary to predictions of the many-to-many hypothesis.
Previous studies report that acquired prosopagnosia is frequently associated with topographic disorientation. Whether this is associated with a specific anatomic subtype of prosopagnosia, how frequently it is seen with the developmental variant, and what specific topographic function is impaired to account for this problem are not known. We studied ten subjects with acquired prosopagnosia from either occipitotemporal or anterior temporal lesions and seven with developmental prosopagnosia. Subjects were given a battery of topographic tests, including house and scene recognition, the road map test, a test of cognitive map formation, and a standardized self-report questionnaire. House and/or scene recognition were frequently impaired after either occipitotemporal or anterior temporal lesions in acquired prosopagnosia. Subjects with occipitotemporal lesions were also impaired in cognitive map formation: an overlap analysis identified right fusiform and parahippocampal gyri as a likely correlate. Only one subject with acquired prosopagnosia had mild difficulty with directional orientation on the road map test. Only one subject with developmental prosopagnosia had difficulty with cognitive map formation, and none were impaired on the other tests. Scores for house and scene recognition correlated most strongly with the results of the questionnaire. We conclude that topographic disorientation in acquired prosopagnosia reflects impaired place recognition, with a contribution from poor cognitive map formation when there is occipitotemporal damage. Topographic impairments are less frequent in developmental prosopagnosia.
Objective Cerebral dyschromatopsia is sometimes associated with acquired prosopagnosia. Given the variability in structural lesions that cause acquired prosopagnosia, this study aimed to investigate the structural correlates of prosopagnosia-associated dyschromatopsia, and to determine if such color processing deficits could also accompany developmental prosopagnosia. In addition, we studied whether cerebral dyschromatopsia is typified by a consistent pattern of hue impairments. Methods We investigated hue discrimination in a cohort of 12 subjects with acquired prosopagnosia and 9 with developmental prosopagnosia, along with 42 matched controls, using the Farnsworth-Munsell 100-hue test. Results We found impaired hue discrimination in six subjects with acquired prosopagnosia, five with bilateral and one with a unilateral occipitotemporal lesion. Structural MRI analysis showed maximum overlap of lesions in the right and left lingual and fusiform gyri. Fourier analysis of their error scores showed tritanopic-like deficits and blue-green impairments, similar to tendencies displayed by the healthy controls. Three subjects also showed a novel fourth Fourier component, indicating additional peak deficits in purple and green-yellow regions. No subject with developmental prosopagnosia had impaired hue discrimination. Conclusions In our subjects with prosopagnosia, dyschromatopsia occurred in those with acquired lesions of the fusiform gyri, usually bilateral but sometimes unilateral. The dyschromatopsic deficit shows mainly an accentuation of normal tritatanopic-like tendencies. These are sometimes accompanied by additional deficits, although these could represent artifacts of the testing procedure.
Background: Recent work has shown that perceptual learning can improve face discrimination in subjects with acquired prosopagnosia. Objective: In this study, we administered the same program to determine if such training would improve face perception in developmental prosopagnosia. Method: We trained ten subjects with developmental prosopagnosia for several months with a program that required shape discrimination between morphed facial images, using a staircase procedure to keep training near each subject's perceptual threshold. To promote ecological validity, training progressed from blocks of neutral faces in frontal view through increasing variations in view and expression. Five subjects did 11 weeks of a control television task before training, and the other five were reassessed for maintenance of benefit 3 months after training. Results: Perceptual sensitivity for faces improved after training but did not improve after the control task. Improvement generalized to untrained expressions and views of these faces, and there was some evidence of transfer to new faces. Benefits were maintained over three months. Training also led to improvements on standard neuropsychological tests of short-term familiarity, and some subjects reported positive effects in daily life. Conclusion: We conclude that perceptual learning can lead to persistent improvements in face discrimination in developmental prosopagnosia. The strong generalization suggests that learning is occurring at the level of three-dimensional representations with some invariance for the dynamic effects of expression.
Smooth pursuit eye movements have been investigated as a diagnostic tool for mild traumatic brain injury (mTBI). However, the degree to which smooth pursuit differentiates mTBI patients from healthy controls (i.e. its diagnostic performance) is only moderate. Our goal was to establish if simultaneous performance of smooth pursuit and a working memory task increased the diagnostic performance of pursuit metrics following mTBI. We integrated an n-back task with two levels of working memory load into a pursuit target, and tested single- and dual-task pursuit in mTBI patients and healthy controls. We assessed pursuit using measures of velocity accuracy, positional accuracy and positional variability. The mTBI group had higher pursuit variability than the control group in all conditions. Performing a concurrent 1-back task decreased pursuit variability for both the mTBI and control groups. Performing a concurrent 2-back task produced differential effects between the groups: Pursuit variability was significantly decreased in the control group, but not in the mTBI group. Diagnostic indices were improved when pursuit was combined with the 2-back task, and increased by 20% for the most sensitive variable. Smooth pursuit with simultaneous working memory load may be a superior diagnostic tool for mTBI than measuring smooth pursuit alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.