For two-dimensional lattices in a tight-binding description, the intrinsic spin-orbit coupling, acting as a complex next-nearest-neighbor hopping, opens gaps that exhibit the quantum spin Hall effect. In this paper, we study the effect of a real next-nearest-neighbor hopping term on the band structure of several Dirac systems. In our model, the spin is conserved, which allows us to analyze the spin Chern numbers. We show that in the Lieb, kagome, and T 3 lattices, variation of the amplitude of the real next-nearest-neighbor hopping term drives interesting topological phase transitions. These transitions may be experimentally realized in optical lattices under shaking, when the ratio between the nearest-and next-nearest-neighbor hopping parameters can be tuned to any possible value. Finally, we show that in the honeycomb lattice, next-nearest-neighbor hopping only drives topological phase transitions in the presence of a magnetic field, leading to the conjecture that these transitions can only occur in multigap systems.
N‐Centred benzene‐1,3,5‐tricarboxamides (N‐BTAs) composed of chiral and achiral alkyl substituents were synthesised and their solid‐state behaviour and self‐assembly in dilute alkane solutions were investigated. A combination of differential scanning calorimetry (DSC), polarisation optical microscopy (POM) and X‐ray diffraction revealed that the chiral N‐BTA derivatives with branched 3,7‐dimethyloctanoyl chains were liquid crystalline and the mesophase was assigned as Colho. In contrast, N‐BTA derivatives with linear tetradecanoyl or octanoyl chains lacked a mesophase and were obtained as crystalline compounds. Variable‐temperature infrared spectroscopy showed the presence of threefold, intermolecular hydrogen bonding between neighbouring molecules in the mesophase of the chiral N‐BTAs. In the crystalline state at room temperature a more complicated packing between the molecules was observed. Ultraviolet and circular dichroism spectroscopy on dilute solutions of N‐BTAs revealed a cooperative self‐assembly behaviour of the N‐BTA molecules into supramolecular polymers with preferred helicity when chiral alkyl chains were present. Both the sergeants‐and‐soldiers as well as the majority‐rules principles were operative in stacks of N‐BTAs. In fact, the self‐assembly of N‐BTAs resembles closely that of their carbonyl (CO)‐centred counterparts, with the exception that aggregation is weaker and amplification of chirality is less pronounced. The differences in the self‐assembly of N‐ and CO‐BTAs were analysed by density functional theory (DFT) calculations. These reveal a substantially lower interaction energy between the monomeric units in the supramolecular polymers of N‐BTAs. The lower interaction energy is due to the higher energy penalty for rotation around the PhNH bond compared to the PhCO bond and the diminished magnitude of dipole–dipole interactions. Finally, we observed that mixed stacks are formed in dilute solution when mixing N‐BTAs and CO BTAs.
We theoretically study the electrokinetic problem of a pressure-induced liquid flow through a narrow long channel with charged walls, going beyond the classical Helmholtz-Schmolukowski picture by considering the surprisingly strong combined effect of (i) Stern-layer conductance and (ii) dynamic charge-regulating rather than fixed surface charges. We find that the water flow induces, apart from the well-known streaming potential, also a strongly heterogeneous surface charge and zeta potential on chemically homogeneous channel walls. Moreover, we identify a novel steady state with a nontrivial 3D electric flux with 2D surface charges acting as sources and sinks. For a pulsed pressure drop our findings also provide a first-principles explanation for ill-understood experiments on the effect of flow on interfacial chemistry [D. Lis et al., Science 344, 1138 (2014)SCIEAS0036-807510.1126/science.1253793].
Small changes in the alkane solvent structure in combination with temperature effects lead to four different conformations of stereoselectively deuterated benzene-1,3,5-tricarboxamides in the aggregated state, affecting the expression of the supramolecular chirality and highlighting the role of the solvent structure in self-assembly processes.
We construct a phenomenological Landau-de Gennes theory for hard colloidal rods by performing an order parameter expansion of the chemical-potential dependent grand potential. By fitting the coefficients to known results of Onsager theory, we are not only able to describe the isotropic-nematic phase transition as function of density, including the well-known density jump, but also the isotropic-nematic planar interface. The resulting theory is applied in calculations of the isotropic core size in a radial hedgehog defect, the density dependence of linear defects of hard rods in square confinement, and the formation of a nematic droplet in an isotropic background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.