The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks (CGCNN) framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of DFT calculated properties for 8 different properties of crystals with various structure types and compositions after trained with 10 4 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.
We show that nanometer-scale pores in single-layer freestanding graphene can effectively filter NaCl salt from water. Using classical molecular dynamics, we report the desalination performance of such membranes as a function of pore size, chemical functionalization, and applied pressure. Our results indicate that the membrane's ability to prevent the salt passage depends critically on pore diameter with adequately sized pores allowing for water flow while blocking ions. Further, an investigation into the role of chemical functional groups bonded to the edges of graphene pores suggests that commonly occurring hydroxyl groups can roughly double the water flux thanks to their hydrophilic character. The increase in water flux comes at the expense of less consistent salt rejection performance, which we attribute to the ability of hydroxyl functional groups to substitute for water molecules in the hydration shell of the ions. Overall, our results indicate that the water permeability of this material is several orders of magnitude higher than conventional reverse osmosis membranes, and that nanoporous graphene may have a valuable role to play for water purification.
Graphene and monolayer transition metal dichalcogenides (TMDs) are promising materials for next-generation ultrathin optoelectronic devices. Although visually transparent, graphene is an excellent sunlight absorber, achieving 2.3% visible light absorbance in just 3.3 angstrom thickness. TMD monolayers also hold potential as sunlight absorbers, and may enable ultrathin photovoltaic (PV) devices due to their semi-conducting character. In this work, we show that the three TMD monolayers MoS2, MoSe2, and WS2 can absorb up to 5-10% incident sunlight in a thickness of less than 1 nm, thus achieving 1 order of magnitude higher sunlight absorption than GaAs and Si. We further study PV devices based on just two stacked monolayers: (1) a Schottky barrier solar cell between MoS2 and graphene and (2) an excitonic solar cell based on a MoS2/WS2 bilayer. We demonstrate that such 1 nm thick active layers can attain power conversion efficiencies of up to similar to 1%, corresponding to approximately 1-3 orders of magnitude higher power densities than the best existing ultrathin solar cells. Our work shows that two-dimensional monolayer materials hold yet untapped potential for solar energy absorption and conversion at the nanoscale
The electronic properties of colloidal quantum dots (QDs) are critically dependent on both QD size and surface chemistry. Modification of quantum confinement provides control of the QD bandgap, while ligand-induced surface dipoles present a hitherto underutilized means of control over the absolute energy levels of QDs within electronic devices. Here, we show that the energy levels of lead sulfide QDs, measured by ultraviolet photoelectron spectroscopy, shift by up to 0.9 eV between different chemical ligand treatments. The directions of these energy shifts match the results of atomistic density functional theory simulations and scale with the ligand dipole moment. Trends in the performance of photovoltaic devices employing ligand-modified QD films are consistent with the measured energy level shifts. These results identify surface-chemistry-mediated energy level shifts as a means of predictably controlling the electronic properties of colloidal QD films and as a versatile adjustable parameter in the performance optimization of QD optoelectronic devices.
Layered semiconductors based on transition-metal chalcogenides usually cross from indirect bandgap in the bulk limit over to direct bandgap in the quantum (2D) limit. Such a crossover can be achieved by peeling off a multilayer sample to a single layer. For exploration of physical behavior and device applications, it is much desired to reversibly modulate such crossover in a multilayer sample. Here we demonstrate that, in a few-layer sample where the indirect bandgap and direct bandgap are nearly degenerate, the temperature rise can effectively drive the system toward the 2D limit by thermally decoupling neighboring layers via interlayer thermal expansion. Such a situation is realized in few-layer MoSe 2 , which shows stark contrast from the well-explored MoS 2 where the indirect and direct bandgaps are far from degenerate. Photoluminescence of few-layer MoSe 2 is much enhanced with the temperature rise, much like the way that the photoluminescence is enhanced due to the bandgap crossover going from the bulk to the quantum limit, offering potential applications involving external modulation of optical properties in 2D semiconductors. The direct bandgap of MoSe 2 , identified at 1.55 eV, may also promise applications in energy conversion involving solar spectrum, as it is close to the optimal bandgap value of single-junction solar cells and photoelechemical devices. KEYWORDS: 2D-Semiconductors, MoSe 2 , MoS 2 , photoluminescence, bandgap, temperature dependence T wo-dimensional (2D) materials have attracted much interest mainly owing to their exotic physical properties that are strikingly different from their three-dimensional (bulk) counterparts. Even though graphene, the most famous member of the 2D material family, possesses extraordinary properties 1 and is readily integrated in various applications, 2−4 the lack of a native bandgap in graphene has led to a broad search for other 2D semiconducting materials. More recently, the transitionmetal dichalcogenide (TMD) semiconductor MoS 2 has been focused on and has shown great potential in the field; singlelayer MoS 2 has been used as an integral part of transistors, 5−8 sensors, 9 and magnetic materials. 10 However, beyond MoS 2 , other layered TMDs offer a large variety of 2D materials with distinct properties.In this work we studied, for the first time, single-layer MoSe 2 mechanically exfoliated onto SiO 2 /Si. 11 Single-layer MoSe 2 displays good thermal stability with a 1.55 eV direct bandgap as determined from photoluminescence (PL) measurements. The PL peak intensity is enhanced dramatically from few-layer to single-layer as a result of the crossover from indirect bandgap in the bulk limit to direct bandgap in the quantum (2D) limit, similar to the behavior of MoS 2 . 12−14 More interestingly, we find that few-layer MoSe 2 flakes posssess a nearly degenerate indirect and direct bandgap, and an increase in temperature can effectively push the system toward the quasi-2D limit by thermally reducing the coupling between the layers. This response in f...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.