Chromatin fibers are dynamic macromolecular assemblages that are intimately involved in nuclear function. This review focuses on recent advances centered on the molecular mechanisms and determinants of chromatin fiber dynamics in solution. Major points of emphasis are the functions of the core histone tail domains, linker histones, and a new class of proteins that assemble supramolecular chromatin structures. The discussion of important structural issues is set against a background of possible functional significance.
The compaction level of arrays of nucleosomes may be understood in terms of the balance between the selfrepulsion of DNA (principally linker DNA) and countering factors including the ionic strength and composition of the medium, the highly basic N termini of the core histones, and linker histones. However, the structural principles that come into play during the transition from a loose chain of nucleosomes to a compact 30-nm chromatin fiber have been difficult to establish, and the arrangement of nucleosomes and linker DNA in condensed chromatin fibers has never been fully resolved. Based on images of the solution conformation of native chromatin and fully defined chromatin arrays obtained by electron cryomicroscopy, we report a linker histone-dependent architectural motif beyond the level of the nucleosome core particle that takes the form of a stem-like organization of the entering and exiting linker DNA segments. DNA completes Ϸ1.7 turns on the histone octamer in the presence and absence of linker histone. When linker histone is present, the two linker DNA segments become juxtaposed Ϸ8 nm from the nucleosome center and remain apposed for 3-5 nm before diverging. We propose that this stem motif directs the arrangement of nucleosomes and linker DNA within the chromatin fiber, establishing a unique threedimensional zigzag folding pattern that is conserved during compaction. Such an arrangement with peripherally arranged nucleosomes and internal linker DNA segments is fully consistent with observations in intact nuclei and also allows dramatic changes in compaction level to occur without a concomitant change in topology.
We have examined the effects of core histone acetylation on the transcriptional activity and higher-order folding of defined 12-mer nucleosomal arrays. Purified HeLa core histone octamers containing an average of 2, 6, or 12 acetates per octamer (8, 23, or 46% maximal site occupancy, respectively) were assembled onto a DNA template consisting of 12 tandem repeats of a 208-bp Lytechinus 5S rRNA gene fragment. Reconstituted nucleosomal arrays were transcribed in a Xenopus oocyte nuclear extract and analyzed by analytical hydrodynamic and electrophoretic approaches to determine the extent of array compaction. Results indicated that in buffer containing 5 mM free Mg 2؉ and 50 mM KCl, high levels of acetylation (12 acetates/octamer) completely inhibited higher-order folding and concurrently led to a 15-fold enhancement of transcription by RNA polymerase III. The molecular mechanisms underlying the acetylation effects on chromatin condensation were investigated by analyzing the ability of differentially acetylated nucleosomal arrays to fold and oligomerize. In MgCl 2 -containing buffer the folding of 12-mer nucleosomal arrays containing an average of two or six acetates per histone octamer was indistinguishable, while a level of 12 acetates per octamer completely disrupted the ability of nucleosomal arrays to form higher-order folded structures at all ionic conditions tested. In contrast, there was a linear relationship between the extent of histone octamer acetylation and the extent of disruption of Mg 2؉ -dependent oligomerization. These results have yielded new insight into the molecular basis of acetylation effects on both transcription and higher-order compaction of nucleosomal arrays.The packaging of eukaryotic DNA into chromatin presents a major obstacle to the transcriptional machinery (reviewed in references 61 and 67). Acetylation of the core histone N termini is a post-translational modification of chromatin that has been widely correlated with enhanced transcriptional activity in vivo (3,34,55,57). Understanding of the connection between histone acetylation and transcriptional regulation has been further strengthened by the recent demonstrations that transcriptional coactivators possess histone acetyltransferase activity (11) and that transcriptional repressors associate with histone deacetylases (52). Despite this strong correlative evidence, the mechanism(s) through which histone acetylation influences transcription remains speculative. At the nucleosome level, the decreased access of transcription factors to regulatory DNA elements in vitro due to wrapping of the DNA around the histone octamer in some cases can be relieved by acetylation of the core histone N termini (38, 63; reviewed in reference 44). Beyond the level of the nucleosome, histone acetylation may function by disrupting higher-order folding of nucleosomal arrays. Studies of selectively trypsinized nucleosomal arrays have established that the core histone N termini perform multiple essential functions during nucleosomal array condensation (...
Regularly spaced nucleosomal arrays equilibrate between unfolded and highly folded conformations in <2 mM MgCl2, and self-associate above 2 mM MgCl2 [Schwarz, P. M., & Hansen, J. C. (1994) J. Biol. Chem. 269, 16284-16289]. Here we use analytical and differential sedimentation techniques to characterize the molecular mechanism and determinants of oligonucleosome self-association. Divalent cations induce self-association of intact nucleosomal arrays by binding to oligonucleosomal DNA and neutralizing its negative charge. Neither linker histones nor H2A/H2B dimers are required for Mg2+ - dependent self-association. However, divalent cations are unable to induce self-association of trypsinized nucleosomal arrays lacking their N- and C-terminal core histone tail domains. This suggests that the H3/H4 tail domains directly mediate oligonucleosome self-association through a non-Coulombic-based mechanism. Self-association occurs independently of whether the oligonucleosome monomers are folded or unfolded. The first step in the self-association pathway is strongly cooperative and produces a soluble association intermediate that sediments approximately 10 times faster than the oligonucleosome monomers. The size of the oligonucleosome polymers increases rapidly as a consequence of small increases in the divalent cation concentration, eventually producing polymeric species that sediment at >> 10 000 S. Importantly, all steps in the self-association pathway are freely reversible upon removal of the divalent cations. Taken together, these data indicate that short oligonucleosome fragments composed of only core histone octamers and DNA possess all of the structural features required to achieve chromosome-level DNA compaction. These findings provide a molecular basis for explaining many of the recently uncovered structural features of interphase and metaphase chromosomal fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.