The ability to invade the intestinal epithelium of mammals is an essential virulence determinant of Yersinia enterocolitica. The chromosomally encoded Y. enterocolitica 8081v invasion gene, inv, was disrupted to assess its role in pathogenesis. The inv mutant (JP273v) was -80-fold less invasive than wild type for cultured epithelial cells. When mice were infected intragastrically, up to 107 fewer JP273v were recovered from Peyer's patches early (6-18 hr) after infection compared with wild
The inv gene encodes the protein invasin, which is the primary invasion factor for Yersinia enterocolitica in vitro and in vivo. Previous studies of Yersinia species have shown that inv expression and entry into mammalian cells are temperature regulated. Invasin production is reduced at the host temperature of 37 degrees C as compared to production at ambient temperature; consequently, this study was initiated to determine whether other host environmental signals might induce inv expression at 37 degrees C. An inv::phoA translational fusion was recombined on to the Y. enterocolitica chromosome by allelic exchange to monitor inv expression. Molecular characterization of expression of the wild-type inv gene and the inv::phoA fusion showed that invasin is not produced until early stationary phase in bacteria grown at 23 degrees C. Y. enterocolitica grown at 37 degrees C and pH 5.5 showed levels of inv expression comparable to those observed in bacteria grown at 23 degrees C. An increase in Na+ ions caused a slight increase in expression at 37 degrees C. However, expression at 37 degrees C was unaffected by anaerobiosis, growth medium, calcium levels, or iron levels. Additionally, Y. enterocolitica expressed invasin in Peyer's patches two days after being introduced intragastrically into BALB/c mice. These results suggest that invasin expression in Y. enterocolitica may remain elevated early during interaction with the intestinal epithelium, a site at which invasin was shown to be necessary.
Temperature is a key environmental cue for Yersinia enterocolitica as well as for the two other closely related pathogens, Yersinia pestis and Yersinia pseudotuberculosis. Between the range of 30 degrees C and 37 degrees C, Y. enterocolitica phase-varies between motility and plasmid-encoded virulence gene expression. To determine how temperature regulates Y. enterocolitica motility, we have been dissecting the flagellar regulatory hierarchy to determine at which level motility is blocked by elevated temperature (37 degrees C). Here we report the cloning, DNA sequences, and regulation of the two main regulators of Class III flagellar genes, fliA (sigma F) and flgM (anti-sigma F), and a third gene, flgN, which we show is required for filament assembly. Identification of the Y. enterocolitica fliA and flgM genes was accomplished by functional complementation of both S. typhimurium and Y. enterocolitica mutations and by DNA sequence analysis. The Y. enterocolitica fliA gene, encoding the flagellar-specific sigma-factor, sigma F, maps immediately downstream of the three flagellin structural genes. The flgM and flgN genes, encoding anti-sigma F and a gene product required for filament assembly, respectively, map downstream of the invasin (inv) gene but are transcribed in the opposite (convergent) direction. By using Northern blot analyses we show that transcription of both fliA and flgM is immediately arrested when cells are exposed to 37 degrees C, coincident with the timing of virulence gene induction. Unlike S. typhimurium flgM mutants, Y. enterocolitica flgM mutants are fully virulent.
It has been hypothesized for many years that the ability of Yersinia spp. to invade tissue culture cells is reflective of their ability to penetrate the intestinal epithelium and that this capacity is an important aspect of the disease process. Three different genes from Yersinia spp. that are involved in the tissue culture invasion phenotype have been identified: inv, ail, and yadA. It was previously shown that inv is necessary for efficient penetration of the intestinal epithelium by Yersinia enterocolitica. The present study was initiated to determine whether other known Yersinia invasion factors could promote uptake of the bacteria by mice in the absence of invasin. In addition, the roles of these three invasion factors in the survival of the bacteria, lethality for mice, and development of pathology were compared. We found that YadA is necessary for persistence of Y. enterocolitica in Peyer's patches, and consistent with this observation, the yadA mutant was avirulent for mice infected either orally or intraperitoneally. In addition, the inv yadA double mutant was avirulent. Histological and immunohistological examination of the Peyer's patches of infected mice indicated that despite the presence of large numbers of CFU at 24 h the yadA and ail yadA mutants cause only minimal pathology and recruitment of macrophages. At 42 h postinfection, Peyer's patches from mice infected with the inv mutant showed no pathology, despite the prediction that some of the mice by this time would be colonized. However, at 72 h, inflammation and necrosis were evident in some Peyer's patches. Together, these observations suggest that for visible pathology to develop, a threshold number of bacteria (>10 5) is needed and the bacteria need to persist for more than 24 h. Lastly, YadA but not Ail may play a role in the less efficient, delayed invasion of the intestinal epithelium observed for the inv mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.