Zinquin [ethyl (2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetate], a new intracellular zinc fluorophore, was used to reveal and to measure Zn in cultured rat hepatocytes before and after metallothionein (MT) induction. Hepatocytes labelled with an intense extranuclear fluorescence. Culture with combinations of Zn, dexamethasone and interleukin-6, increased intracellular MT by 24-fold, Zn 3-fold, and Zinquin fluorescence by approx. 2-fold above control values. Zinquin fluorescence correlated in descending order with the total cellular Zn (r = 0.747), exchangeable Zn (r = 0.735), soluble cytosolic Zn (r = 0.669) and MT (r = 0.666). When Zinquin was incubated with a cytosolic fraction of liver proteins before Sephadex G-75 column chromatography, it fluoresced with free, MT-incorporated and protein-bound Zn. Although only a slight attenuation of fluorescence was seen with high-molecular-mass protein-bound Zn, MT was degraded by 60% in the presence of Zinquin. The undegraded Zn-MT fluoresced at about 20% of the expected intensity. Although Zinquin fluoresces with all cytosolic Zn, caution is required when comparisons are made between samples with different concentrations of MT. This limitation was demonstrated by staining liver slices from adjuvant-treated rats where MT was increased 24-fold, intracellular Zn by 77%, but Zinquin fluorescence by only 19% above controls. Nevertheless, Zinquin should prove to be a useful tool for studying the distribution of Zn in living cells.
Zn may have an important protective role in the respiratory epithelium and Zn deficiency may enhance airway inflammation and epithelial damage. The effects of mild nutritional Zn deficiency on airway hyperresponsiveness (AHR) and airway inflammation in mice sensitized and challenged with ovalbumin (OVA) to induce an allergic response were investigated. Balb/c mice were given Zn normal (ZN, 50 mg/kg Zn) or Zn limited diets (ZL, 14 mg/kg Zn) before and during induction of allergic airway inflammation, with appropriate controls (saline-treated, SAL). ZL mice had greater levels of AHR than ZN mice, regardless of presence or absence of allergic inflammation. These mice also had increased eosinophilia and mucus cell hyperplasia compared with ZN mice. Second, ZN and ZL OVA-treated mice had significant decreases in airway epithelial Zinquin fluorescence, indicating a lowered availability of Zn compared with their SAL-treated counterparts. In contrast, the pro-apoptotic protein caspase-3, which was co-localized with Zn in the apical epithelium, was significantly increased in both ZN and ZL OVA-treated mice. Immunologically active caspase-3 and apoptosis were increased in OVA-treated mice, especially the ZL group. These findings provide the first data for adverse effects of Zn deficiency on the respiratory epithelium and support a role for altered Zn homeostasis and caspase upregulation in asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.