A post-training reversible lesion technique was used to examine the effects of neural inactivation of the dorsal hippocampus on place and response learning. Male Long-Evans rats trained in one of two versions of a water plus-maze task received post-training intra-hippocampal infusions of the local anesthetic drug bupivacaine (0.75% solution, 0.5 microl), or saline. Post-training intra-hippocampal infusions of bupivacaine attenuated acquisition of the place task and enhanced acquisition of the response task. Delayed (2-h) post-training infusions of bupivacaine did not affect retention in either task. The findings demonstrate (1) enhanced learning after reversible hippocampal lesions that is independent of treatment influences on non-mnemonic factors, and (2) inactivation of the dorsal hippocampus during the post-training memory consolidation period is sufficient to enhance response learning.
Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required.
Striatal learning systems are uniquely dysfunctional in both children and adults with TS. The correlation of habit learning with symptom severity suggests that the number and severity of tics are a function of the degree to which the system for habit learning is dysfunctional. Thus, both the deficits in habit learning and the tic symptoms of TS are likely to be consequences of the previously reported anatomical and functional disturbances of the striatum in children and adults who have TS. The existence of a well-developed animal model for this learning system, which permits study of the neural and molecular bases of habit learning, has important implications for the neurobiological study of TS and for the development of new or improved therapeutics for this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.