The complexity and tight integration of electromechanical systems often makes them "brittle" and hard to modify in response to changing requirements. We aim to remedy this by capturing expert knowledge as functional blueprints, an idea inspired by regulatory processes that occur in natural morphogenesis. We then apply this knowledge in an intelligent design variation tool. When a user modifies a design, our tool uses functional blueprints to modify other components in response, thereby maintaining integration and reducing the need for costly search or constraint solving. In this paper, we refine the functional blueprint concept and discuss practical issues in applying it to electromechanical systems. We then validate our approach with a case study applying our prototype tool to create variants of a miniDroid robot and by empirical evaluation of convergence dynamics of networks of functional blueprints.
Information Management (IM) services need lifecycle management, i.e., determining how long persistent information is retained locally and when it is moved to accommodate new information. This is important when bridging IM services from enterprise to tactical environments, which can have limited onboard storage and be in highly dynamic situations with varying information needs. In this paper, we describe an approach to Value Function based Information Lifecycle Management (VFILM) that balances the value of existing information to current and future missions with constraints on available storage. VFILM operates in parallel with IM services in dynamic situations where missions and their information needs, the types of information being managed, and the criticality of information to current missions and operations are changing. In contrast to current solutions that simply move the oldest or least frequently accessed information when space is needed, VFILM manages information lifecycle based on a combination of inputs including attributes of the information (its age, size, type, and other observable attributes), ongoing operations and missions, and the relationships between different pieces of information. VFILM has three primary innovative features: (1) a fuzzy logic function that calculates a ordering of information value based on multiple relative valued attributes; (2) mission/task awareness that considers current and upcoming missions in information valuation and storage requirements; and (3) information grouping that treats related information collectively. This paper describes the VFILM architecture, a VFILM prototype that works with Air Force Research Laboratory IM services, and the results of experiments showing VFILM's effectiveness and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.