Two potent inhibitors based on the crystal structure of influenza virus sialidase have been designed. These compounds are effective inhibitors not only of the enzyme, but also of the virus in cell culture and in animal models. The results provide an example of the power of rational, computer-assisted drug design, as well as indicating significant progress in the development of a new therapeutic or prophylactic treatment for influenza infection.
a-Tocopheryl succinate (a-TOS) is a selective inducer of apoptosis in cancer cells, which involves the accumulation of reactive oxygen species (ROS). The molecular target of a-TOS has not been identified. Here, we show that a-TOS inhibits succinate dehydrogenase (SDH) activity of complex II (CII) by interacting with the proximal and distal ubiquinone (UbQ)-binding site (Q P and Q D , respectively). This is based on biochemical analyses and molecular modelling, revealing similar or stronger interaction energy of a-TOS compared to that of UbQ for the Q P and Q D sites, respectively. CybL-mutant cells with dysfunctional CII failed to accumulate ROS and underwent apoptosis in the presence of a-TOS. Similar resistance was observed when CybL was knocked down with siRNA. Reconstitution of functional CII rendered CybL-mutant cells susceptible to a-TOS. We propose that a-TOS displaces UbQ in CII causing electrons generated by SDH to recombine with molecular oxygen to yield ROS. Our data highlight CII, a known tumour suppressor, as a novel target for cancer therapy.
We used NMR spectroscopy, molecular modeling and infectivity competition assays to investigate the key interactions between the spike protein (VP8(*)) from 'sialidase-insensitive' human Wa and 'sialidase-sensitive' porcine CRW-8 rotaviruses and the glycans of gangliosides G(M1) and G(D1a). Our data provide strong evidence that N-acetylneuraminic acid is a key determinant for binding of these rotaviruses. This is in contrast to the widely accepted paradigm that sialic acids are irrelevant in host cell recognition by sialidase-insensitive rotaviruses.
Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhib-ited the succinate dehydrogenase (SDH) activity of CII with IC 50 of 80 M, whereas the electron transfer from CII to CIII was inhibited with IC 50 of 1.5 M. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1␣ fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser 68 within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug.Mitochondria are emerging as targets for a variety of anti-cancer drugs (1-5) that belong to a group of compounds termed "mitocans" (6, 7). Of these agents, we and others have been studying the group of vitamin E (VE) 2 analogs, epitomized by the "redox-silent" ␣-tocopheryl succinate (␣-TOS) and ␣-tocopheryl acetyl ether (8). Both of these agents proved to be selective inducers of apoptosis in cancer cells and efficient suppressors of tumors in experimental models (9 -16).VE analogs with anti-cancer activity have been classified as mitocans (i.e. small anti-cancer agents that act by selectively destabilizing mitochondria in cancer cells) (6 -8). Of the several groups of mitocans, the anti-cancer VE analogs belong to both the class of BH3 mimetics, which includes compounds interfering with the interactions of the Bcl-2 family proteins (17), as well as to the class of agents that interfere with the mitochondrial electron redox chain. The latter activity is probably the main reason for the strong apoptogenic efficacy of agents like ␣-TOS (18). More specifically, ␣-TOS interferes * This work was supported by grants from the Australian Research Council,
Influenza virus sialidase has an essential role in the virus' life cycle. Two distinct groups of influenza A virus sialidases have been established, that differ in the flexibility of the '150-loop', providing a more open active site in the apo form of the group-1 compared to group-2 enzymes. In this study we show, through a multidisciplinary approach, that novel sialic acid-based derivatives can exploit this structural difference and selectively inhibit the activity of group-1 sialidases. We also demonstrate that group-1 sialidases from drug-resistant mutant influenza viruses are sensitive to these designed compounds. Moreover, we have determined, by protein X-ray crystallography, that these inhibitors lock open the group-1 sialidase flexible 150-loop, in agreement with our molecular modelling prediction. This is the first direct proof that compounds may be developed to selectively target the pandemic A/H1N1, avian A/H5N1 and other group-1 sialidase-containing viruses, based on an open 150-loop conformation of the enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.