BackgroundIndividual study results have demonstrated unclear relationships between neurocompressive disorders and paraspinal muscle morphology. This systematic review aimed to synthesize current evidence regarding the relationship lumbar neurocompressive disorders may have with lumbar paraspinal muscle morphology.MethodsSearches were conducted in seven databases from inception through October 2017. Observational studies with control or comparison groups comparing herniations, facet degeneration, or canal stenosis to changes in imaging or biopsy-identified lumbar paraspinal muscle morphology were included. Data extraction and risk of bias assessment were performed by review author pairs independent of one another. Morphological differences between individuals with and without neurocompressive disorders were compared qualitatively, and where possible, standardised mean differences were obtained.ResultsTwenty-eight studies were included. Lumbar multifidus fiber diameter was smaller on the side of and below herniation for type I [SMD: −0.40 (95% CI = −0.70, −0.09) and type II fibers [SMD: −0.38 (95% CI = −0.69, −0.06)] compared to the unaffected side. The distribution of type I fibers was greater on the herniation side [SMD: 0.43 (95% CI = 0.03, 0.82)]. Qualitatively, two studies assessing small angular fiber frequency and fiber type groupings demonstrated increases in these parameters below the herniation level. For diagnostic imaging meta-analyses, there were no consistent differences across the various assessment types for any paraspinal muscle groups when patients with herniation served as their own control. However, qualitative synthesis of between-group comparisons reported greater multifidus and erector spinae muscle atrophy or fat infiltration among patients with disc herniation and radiculopathy in four of six studies, and increased fatty infiltration in paraspinal muscles with higher grades of facet joint degeneration in four of five studies. Conflicting outcomes and variations in study methodology precluded a clear conclusion for canal stenosis.ConclusionsBased on mixed levels of risk of bias data, in patients with chronic radiculopathy, disc herniation and severe facet degeneration were associated with altered paraspinal muscle morphology at or below the pathology level. As the variability of study quality and heterogeneous approaches utilized to assess muscle morphology challenged comparison across studies, we provide recommendations to promote uniform measurement techniques for future studies.Trial registrationPROSPERO 2015: CRD42015012985Electronic supplementary materialThe online version of this article (10.1186/s12891-018-2266-5) contains supplementary material, which is available to authorized users.
Purpose Studies using magnetic resonance imaging to assess lumbar multifidus cross-sectional area frequently utilize T1 or T2-weighted sequences, but seldom provide the rationale for their sequence choice. However, technical considerations between their acquisition protocols could impact on the ability to assess lumbar multifidus anatomy or its fat/muscle distinction. Our objectives were to examine the concurrent validity of lumbar multifidus morphology measures of T2 compared to T1-weighted sequences, and to assess the reliability of repeated lumbar multifidus measures. Methods The lumbar multifidus total cross-sectional area of 45 patients was measured bilaterally at L4 and L5, with histogram analysis determining the muscle/fat threshold values per muscle. Images were later re-randomized and re-assessed for intra-rater reliability. Matched images were visually rated for consistency of outlining between both image sequences. Bland-Altman bias, limits of agreement, and plots were calculated for differences in total cross-sectional area and percentage fat between and within sequences, and intra-rater reliability analysed. Results T1-weighted total cross-sectional area measures were systematically larger than T2 (0.2 cm2), with limits of agreement <±10% at both spinal levels. For percentage fat, no systematic bias occurred, but limits of agreement approached ±15%. Visually, muscle outlining was consistent between sequences, with substantial mismatches occurring in <5% of cases. Intra-rater reliability was excellent (ICC: 0.981–0.998); with bias and limits of agreement less than 1% and ±5%, respectively. Conclusion Total cross-sectional area measures and outlining of muscle boundaries were consistent between sequences, and intra-rater reliability for total cross-sectional area and percentage fat was high indicating that either MRI sequence could be used interchangeably for this purpose. However, further studies comparing the accuracy of various methods for distinguishing fat from muscle are recommended.
Associations between multifidus muscle morphology and degenerative pathologies have been implied in patients with non-specific low back pain, but it is unknown how these are influenced by pathology severity, number, or distribution. MRI measures of pure multifidus muscle cross-sectional area (CSA) were acquired from 522 patients presenting with low back and/or leg symptoms in an outpatient clinic. We explored cross-sectional associations between the presence, distribution, and/or severity of lumbar degenerative pathologies (individually and in aggregate) and muscle outcomes in multivariable analyses (beta coefficients [95% CI]). We identified associations between lower pure multifidus muscle CSA and disc degeneration (at two or more levels): − 4.51 [− 6.72; − 2.3], Modic 2 changes: − 4.06 [− 6.09; − 2.04], endplate defects: − 2.74 [− 4.58; − 0.91], facet arthrosis: − 4.02 [− 6.26; − 1.78], disc herniations: − 3.66 [− 5.8; − 1.52], and when > 5 pathologies were present: − 6.77 [− 9.76; − 3.77], with the last supporting a potential dose–response relationship between number of spinal pathologies and multifidus morphology. Our findings could hypothetically indicate that these spinal and muscle findings: (1) are part of the same degenerative process, (2) result from prior injury or other common antecedent events, or (3) have a directional relationship. Future longitudinal studies are needed to further examine the complex nature of these relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.