Since the discovery of the v-src and c-src genes and their products, much progress has been made in the elucidation of the structure, regulation, localization, and function of the Src protein. Src is a non-receptor protein tyrosine kinase that transduces signals that are involved in the control of a variety of cellular processes such as proliferation, di erentiation, motility, and adhesion. Src is normally maintained in an inactive state, but can be activated transiently during cellular events such as mitosis, or constitutively by abnormal events such as mutation (i.e. v-Src and some human cancers). Activation of Src occurs as a result of disruption of the negative regulatory processes that normally suppress Src activity, and understanding the various mechanisms behind Src activation has been a target of intense study. Src associates with cellular membranes, in particular the plasma membrane, and endosomal membranes. Studies indicate that the di erent subcellular localizations of Src could be important for the regulation of speci®c cellular processes such as mitogenesis, cytoskeletal organization, and/or membrane tra cking. This review will discuss the history behind the discovery and initial characterization of Src and the regulatory mechanisms of Src activation, in particular, regulation by modi®cation of the carboxyterminal regulatory tyrosine by phosphatases and kinases. Its focus will then turn to the di erent subcellular localizations of Src and the possible roles of nuclear and perinuclear targets of Src. Finally, a brief section will review some of our present knowledge regarding Src involvement in human cancers. Oncogene (2000) 19, 5620 ± 5635.
c-Src tyrosine kinase activity is elevated in several types of human cancer, and this has been attributed to elevated c-Src expression levels, increased c-Src specific activity, and activating mutations in c-Src. We have found a number of human breast cancer cell lines with elevated c-Src specific activity that also possess elevated phosphatase activity directed against the carboxyl-terminal negative regulatory domain of Src family kinases. To identify this phosphatase, cell extracts from MDA-MB-435S cells were chromatographed and the fractions were assayed for phosphatase activity. Four peaks of phosphatase activity directed against the nonspecific substrate poly(Glu/Tyr) were detected. c-Src is a membrane-associated non-receptor tyrosine kinase that plays an important role in relaying signals received by receptors on the cell surface to the cell interior (for a recent review, see Refs.
Src-specific activity has been reported to be elevated in a high percentage of colon cancer cell lines and tumors, but the underlying mechanisms are largely unknown. In this study, we report that, in the seven cancer cell lines tested, Src-specific activity was elevated (5.2-to 18.7-fold) relative to normal colon cells (FHC). This activation of Src correlated with reduced phosphorylation at Y530 of Src, whereas there was no significant change in the level of phosphorylation at Y419. The membrane tyrosine phosphatase activity for a Src familyspecific phosphopeptide substrate FCP (Fyn COOH-terminal peptide phosphorylated by Csk) was greatly increased in the cancer cells and was attributed to PTP1B in most of the cell lines. Membrane PTP1B protein levels were also greatly increased. Overexpression of PTP1B increased Src specific activity in colon cancer cells by reducing phosphorylation at Y530 of Src. It also increased anchorage-independent cell growth and this increase was blocked by the Src inhibitor PP2 and Src small interfering RNA (siRNA). Down-regulating PTP1B activity by PTP1B inhibitor CinnGEL 2Me or knocking down PTP1B using siRNA also reduced Src kinase activity and colony formation ability of colon cancer cells. PTP1B siRNA reduced tumor growth in nonobese diabetic/severe combined immunodeficient mice. This study suggests that (a) PTP1B can act as an important activator of Src in colon cancer cells via dephosphorylation at Y530 of Src and (b) elevated levels of PTP1B can increase tumorigenicity of colon cancer cells by activating Src.
Background: Abnormal regulation of calpains and Src contributes to stroke-induced brain damage.
Results:The abnormally activated calpains cleave Src to generate a truncated Src fragment capable of directing neurons to undergo cell death.
Conclusion:A new function of Src in neuronal death is discovered. Significance: Prevention of calpain-mediated cleavage of Src is a potential therapeutic strategy to minimize stroke-induced brain damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.